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ABSTRACT
Achieving an optimized mapping of Deep Learning (DL) operators
to new hardware architectures is the key to building a scalable
DL system. However, handcrafted optimization involves huge en-
gineering efforts, due to the variety of DL operator implementa-
tions and complex programming skills. Targeting the innovative
many-core processor SW26010 adopted by the 3rd fastest super-
computer Sunway TaihuLight, an end-to-end automated frame-
work called swATOP is presented as a more practical solution for
DL operator optimization. Arithmetic intensive DL operators are
expressed into an auto-tuning-friendly form, which is based on
tensorized primitives. By describing the algorithm of a DL oper-
ator using our domain specific language (DSL), swATOP is able
to derive and produce an optimal implementation by separating
hardware-dependent optimization and hardware-agnostic optimiza-
tion. Hardware-dependent optimization is encapsulated in a set of
tensorized primitives with sufficient utilization of the underlying
hardware features. The hardware-agnostic optimization contains a
scheduler, an intermediate representation (IR) optimizer, an auto-
tuner, and a code generator. These modules cooperate to perform an
automatic design space exploration, to apply a set of programming
techniques, to discover a near-optimal solution, and to generate
the executable code. Our experiments show that swATOP is able
to bring significant performance improvement on DL operators in
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over 88% of cases, compared with the best-handcrafted optimization.
Compared to a black-box autotuner, the tuning and code generation
time can be reduced to minutes from days using swATOP.
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1 INTRODUCTION
Deep Learning (DL) has achieved superior performance far beyond
traditional machine learning methods in several fields, e.g., image
recognition, natural language processing, speech recognition and
etc. The traditional general-purpose processors represented by the
CPU have been unable to meet the growing computation demand of
DL applications. In order to efficiently train, and deploy models in a
massively parallel and heterogeneous computing environment, scal-
able DL systems must be built on top of many-core architectures in
emerging cutting-edge supercomputers. As a result, optimization of
arithmetic intensive DL operators, such as convolution, matrix mul-
tiplication, according to underlying hardware intrinsics, becomes
the important foundation of DL system building.

Adapting DL operators to a new architecture demands substan-
tial human efforts to rethink, redesign, and re-implement existing
algorithms. This paper takes the SW26010, an innovative hetero-
geneous many-core processor integrating 260 computing cores,
making Sunway TaihuLight the third supercomputer in the world,
as a target to demonstrate how we can reduce human efforts. There
have been a set of manual efforts to support deep learning applica-
tions on the Sunway TaihuLight system, including a linear algebra
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library called xMath [9], a DL operator library called swDNN [7]
and a parallel framework called swCaffe [12]. However, there are
still a number of obstacles that prevent these software from better
applicability and optimal performance.

First, complex architectural intrinsics make it difficult for devel-
opers to map DL operators on new hardware for better performance
and new functional modules. In term of the SW26010 (Sec. 2), it
provides software controlled cache scheme, register-level data shar-
ing between cores and memory access in a coarse-grained manner.
These unique hardware features make some design techniques on
the GPU and CPU invalid in our case.

Second, it is a huge engineering burden to develop a DL oper-
ator library that brings satisfactory performance to all possible
parameter configurations. The search space of possible parameter
configurations resulting from multidimensional tensors is colossal,
while the optimal implementation of variant parameter configu-
rations should be treated individually. As a result, it is extremely
difficult to build a few of generic implementations manually to
efficiently support all DL operator variants.

Third, compiler tools of new hardware are often not able to meet
the demanding requirements of DL applications, and mature com-
piler tool chains (e.g. LLVM [10]) usually have not supported the
new hardware and new features. As for SW26010, even program-
ming with low-level intrinsics is not enough to lead compilers to
produce an optimal assembly code. According to [7] [9], annoying
assembly level code tuning is sometimes necessary.

A framework that can perform automatic design space explo-
ration and discover near-optimal solutions is therefore highly de-
sirable. Existing frameworks, such as Halide [16], TVM [5], Tensor
Comprehensions [20], are able to automatically optimize DL opera-
tors. However, they can not take full advantages of many important
architecture-specific features (for SW26010, e.g., pipeline, register
data communication, DMA engine), resulting in non-trivial perfor-
mance loss. For example, recent work swTVM [14] extends the TVM
to generate code for SW26010. However, due to lack of support for
register communication and pipeline, code generated by swTVM
performs much slower than existing manual version. Besides, they
heavily depend on low-level code optimization and generation tools
such as LLVM, Polyhedral tools [1, 21], which is not supported by
new hardware like SW26010. Third, their tuning methods empha-
size too much on versatility, and ignore prior knowledge of specific
hardware which is helpful to prune the search space.

In this paper, we suggest a more practical way to achieve optimal
DL operator performance through an abstracted description of the
algorithm and an automated tuning framework. Decomposed into
a sequence of tensorized primitives , arithmetic intensive DL opera-
tors can be expressed in an auto-tuning-friendly form. We provide
an automated framework called swATOP to find the best organi-
zation scheme of these tensorized building-blocks and generate
near-optimal code. The major philosophy behind swATOP is to sep-
arate hardware-agnostic optimizations from hardware-dependent
optimizations.

Our swATOP framework is built on a set of tensorized computing
and memory access primitives, which can take full advantage of
the hardware features of SW26010. The swATOP framework con-
sists of a scheduler, an intermediate representation (IR) optimizer,
an autotuner, and a code generator. These modules cooperate to

perform automatic schedule space exploration, to apply a set of
programming techniques for tensorized primitives, to discover a
near-optimal solution, and to generate the executable code. Our
framework can handle general performance issues of tensorizing
DL operators, such as techniques to process the boundary where
tensorized primitives cannot be used, and methods to hide memory
access latency. For the SW26010 processor, a performance-model-
based static autotuning method is adopted to quickly identify a
near-optimal solution. swATOP can be used as a offline compiler
by pre-generating near-optimal executable code, or be integrated
into other frameworks to provide online autotuning.

The paper makes the following contributions.
• We propose an auto-tuning-friendly abstraction separating
hardware-agnostic optimizations from hardware-dependent
optimizations to combine autotuning techniques and architecture-
specific tensorized primitives.
• We demonstrate that a performance-model-based autotuner
based on prior knowledge of the hardware is a practical
solution for latency-oriented many-core architectures. From
days to minutes, the autotuner of swATOP is able to reduce
over two orders of magnitude of tuning time cost compared
to a black-box autotuner. Even in the worst case, it only
brings less than 8% performance loss.
• We propose and implement an automated framework to opti-
mize arithmetic intensive DL operators on SW26010, which
is able to replace the time-consuming manual optimization.
The code generated by swATOP outperforms the best manual
optimization implementation in over 88% cases.

2 SW26010 MANY-CORE PROCESSOR
The SW26010 many-core processor (Fig. 1) consists of four core
groups (CGs) and provides a peek performance of 3.06TFlops with
136 GB/s hardware memory bandwidth. Each CG includes one
management processing element (MPE), one computing processing
element (CPE) cluster with 8×8 CPEs, and one memory controller
(MC). These four CGs are connected via a network-on-chip (NoC).
The processor connects to outside devices through a system inter-
face (SI).

CG0 CG1

CG2 CG3

Figure 1: Overview of SW26010.

The MPE is a complete 64-bit reduced instruction set computer
(RISC) core, which is an ideal core for handling management and
communication functions. The CPE is designed to provide maxi-
mum aggregated computing power while minimizing the complex-
ity of the micro-architecture. Each CPE has 16KB L1 instruction
cache and a 64KB user-controlled scratch pad memory (SPM). The
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CPE cluster is organized as an 8×8 mesh with a mesh network that
provides low-latency register data communication among the 8×8
CPEs. Both the MPE and CPE support 256-bit vector instructions.

Compared with other multi-core or many-core processors, the
CPE cluster of SW26010 design demonstrates a number of different
features: (i) The SPM is usually configured as a user-controlled fast
’cache’, and programmers have to explicitly move data onto or out
of the SPM. A CPE provides two kinds of memory access, i.e., global
load/store (GL/GS) and direct memory access (DMA) engine, to
transfer data between main memory and SPM. Stream Triad Test
in [24] shows that the bandwidth of GL/GS and DMA are 1.48GB/s
and 22.6GB/s, respectively. As a result, exploring utilization of DMA
is important in optimization. (ii) The CPE cluster offers fast register
data communication among the 8 × 8 CPEs. Benchmarking in [24]
shows that the integrated register communication bandwidth per
CPE cluster is 647.25GB/s. Register communication provides an
important data sharing capability at the CPE level. (iii) Each CPE
includes two pipelines (P0, and P1) for the instruction decoding,
issuing, and execution. P0 is for floating-point operations, and both
floating-point and fixed-point vector operations. P1 is for memory-
related operations. Both P0 and P1 support integer scalar operations.
Therefore, identifying the right form of instruction-level parallelism,
i.e., pipeline, can potentially resolve the dependence in instruction
sequences, and further improve the computation throughput.

Makeing full use of above architecture-specific intrinsics includ-
ing register communication, pipelines, SPM, DMA engine, and vec-
torization, is critical in automatical optimization of DL operators
on SW26010.

3 AUTO-TUNING-FRIENDLY DL OPERATORS
Arithmetic intensive DL operators, such as multi-channel convolu-
tion, matrix multiplication, consume majority of total time in DL
networks, for example, more than 85% in Convolutional Neural
Network (CNN) [13]. Consequently, the key point in optimizing
DL operators is accelerating these compute-intensive arithmetic
operators. swATOP focus on these pivotal DL operators. The ma-
jor computation part can be expressed in the form of nested for-
loops with multiply-and-accumulate (MAC) operations. As shown
in Alg. 1, a naive implementation of a direct convolution is a 7-
level nested loops of a single MAC statement. A design space is
derived by performing equivalent transformations on the nested
loops. However, using MAC as the basic building-blocks will lead
to a huge searching space for identifying the best candidate.

By transforming lower-order data to higher-order data, a unit of
computation can be replaced with tensorized intrinsics, making it
easy to leverage handcrafted micro-kernels. Therefore, we propose
to use tensorized micro-kernels as the basic building-blocks for DL
operators, and call such a process as tensorization.

Tensorization is able to decouple the part of scheduling the loops
of the kernel, and part of implementing the kernel. The former
is often hardware-agnostic and suitable for autotuning, while the
latter is generally hardware-dependent and manually designed
to leverage all architecture-specific features. We can then apply
different strategies to the two optimization problems accordingly. In
addition, since the dimension parameters of the tensors are discrete
and limited, tensorization is able to facilitate a precise performance

estimation. In contrast, traditional optimizationmethods are usually
tightly coupled to the underlying hardware, making it difficult to
drive an autotuning process.

Matrix multiplications are naturally suitable to be tensorized
into GEMM micro-kernels in the form of three nested loops. For
multi-channel convolution, as shown in Fig. 2, we propose three
tensorized designs. The explicit-GEMM-based convolution (Fig. 2,
left) is a common approach [4] to implement convolutional layers,
which first expands the image into a column matrix (also known
as im2col process), and performs a matrix-multiplication operation
on the column matrix and the filter matrix.

The winograd method (Fig. 2, middle) computes minimal com-
plexity convolution over small tiles using Winograd’s minimal
filtering algorithms [11], and is fast with small filter kernels (3x3,
4x4). The Winograd algorithm works on small tiles of the input
image. The input tile and filter are transformed, the outputs of the
transform are multiplied together in an element-wise fashion, and
the result is transformed back to obtain the outputs of the convolu-
tion. In our design, every single element-wise multiplication can be
packaged as a matrix multiplication. The transformations between
the tensors and the matrices are done quickly on CPE clusters, so
that most of the computation happens in matrix multiplications.
Winograd method has to conduct a batch of GEMM operations, i.e.,
16 multiplication for 3x3 kernels.

The implicit-GEMM-based convolution (Fig. 2, right) [6, 7] is
based on direct convolution. Different from the explicit-GEMM-
based method, as shown in Alg. 2, a tensorized implicit-GEMM-
based convolution can be derived by reordering and replacing some
innermost loops with GEMM micro-kernels.

Algorithm 1 A MAC-based Convolution Implementation
Input: Input, Filter
Output: Output
1: for cB in range(0,B) do
2: for cRo in range(0,Ro ) do
3: for cCo in range(0,Co ) do
4: for cKr in range(0,Kr ) do
5: for cKc in range(0,Kc ) do
6: for cNo in range(0,No ) do
7: for cNi in range(0,Ni ) do
8: outputcB,cNo,cRo,cCo =

incB,cNi ,cRo+cKr ,cCo+cKc ∗weightcNo,cNi ,cKr ,cKc

4 METHODOLOGY
Based on the tensorized description of DL operators, the overview
of swATOP is shown in Fig. 3. Users describe the computation of DL
operators and schedule space using tensorized-primitive based DSL.
Scheduler takes the DSL as input, traverses the defined schedule
space, and generates all candidate implementations represented in
IR structure (Sec 4.4). IR optimizer performs multiple customized
IR optimizations. Then autotuner leverages a performance-based
cost model to predict and pick best (or top k) implementations, and
code generator generates efficient machine code for SW26010. In
the rest of this section, we introduce these components in details.



ICPP 2019, August 5–8, 2019, Kyoto, Japan Wei Gao, et al.

…. ….….

!" !

#"#

$ $"

WINOGRAD	CONV
%×'( '(×') %×')

Implicit-GEMM	CONV

("2$)×'( ("2'()×')

$*

+*

'* "
"

'*

')

')
$)

+)

($,+))×')

Explicit-GEMM	CONV

Figure 2: Three methods to decompose convolution into tensorized GEMM primitives.

Algorithm 2 A Tensorized Convolution Implementation

1: for cRo = ranдe(0,Ro ) do
2: for cCo = ranдe(0,Co ) do
3: for cKr = ranдe(0,Kr ) do
4: for cKc = ranдe(0,Kc ) do
5: cRi = cRo + cKr
6: cCi = cCo + cKc
7: DMA get Di ← Ni × B channels of in(cCi ,cRi )
8: DMA get W ← Ni × No channels of

weight(cKc ,cKr )
9: GEMM Primitives: Do+ =W × Di

10: DMA put Do → No × B channels of out(cCo,cRo )

Computation

Scheduler (loop, layout, 

and vectorization transformation) 

IR Optimizer (DMA inference, Hiding 
memory access latency, boundary processing)

Cost Model

Code Generator

Schedule Space

Autotuner

DSL

Figure 3: Overview of swATOP. swATOP takes DSL for DL
operators as input and generates high performance code (C
code) for SW26010.

4.1 Tensorized Primitives
The micro-kernels can be implemented as tensorized primitives to
facilitate the autotuning process in swATOP. Our primitives mainly
include a set of operations to do calculation in SPM and transfer
data between memory and SPM using DMA engine. We implement
a set of GEMM primitives in assembly language to do C+ = A × B,
where A,B and C reside in the SPM space. Our design leverages
architecture-related features including register communication,
the inherent parallelism between two instruction pipelines, and
vectorization. Optimization details can be found in Appendix Sec.
9. The interface of our GEMM primitive is illustrated as follows,
which is similar to the CBLAS interface. The difference is that we
have added a parameter that indicates the vectorization dimension.

spm_gemm(int M, int N, int K, float ALPHA, float* A,
int LDA, float* B, int LDB, float BETA, float* C, int
LDC, swVecDim vd)

As shown in Fig. 12, each CPE needs to access a non-overlapping
2D block, so that the memory access pattern is strided. As a re-
sult, the DMA operation interface provides both continuous and
strided memory access mode indicated by parameter strideSize.
Since DMA works in asynchronous way, primitives to launch DMA
engine and primitives to wait for finish need to be used in pairs.

swDMA(float* src, float* dst, size_t count, size_t
blockSize, size_t strideSize, swMemcpyDirection dir,
swReplyWord* replyword)

swDMAWait(swReplyWord* replyword, int replyTimes)

4.2 DSL
Using tensorized primitives as building-blocks, we introduce a lan-
guage (Fig 4, left) implemented in embedding C++ to depict the
computation of DL operator and corresponding schedule space. An
initial tensorized implementation that only describe the computa-
tion is called a schedule seed. In DSL, the schedule seed is expressed
using variables, tensors and computations. The implementation,
which contains schedule information (e.g. loop, layout, vectoriza-
tion schedule) and is logically equivalent to the schedule seed, is
called as a schedule strategy. All valid schedule strategies constitute
the schedule space. Our DSL provides many data structures and
interfaces to depict the schedule seed and schedule space.

4.3 Scheduler
The scheduler is designed to discover all tensorized implementation
candidates defined by DSL schedule space. Through the combina-
tion of three transformation methods, Loop Transformation, Layout
Transformation, and Vectorization Transformation, we can build a
schedule space with a large number of schedule strategies.

4.3.1 Loop Transformation. The loop transformation is able to ex-
tend the schedule space by combining a set of classic concepts,
like loop splitting, loop reordering, and loop fusion. Split refers to
splitting a single loop into two loops. The dimension on which the
loop iterates can be split by a factor, creating two new dimensions:
an outer dimension, over the old range divided by the factor, and an
inner dimension, which iterates within the factor. Reorder refers to



Automatically Optimizing Deep Learning Operators on SW26010 Many-Core Processor ICPP 2019, August 5–8, 2019, Kyoto, Japan

Iter cCo_out, cCo_in;
FactorVar Sco;
split(cCo, cCo_out, cCo_in, Sco);
reorder({cCo_out, cRo, cKr, cKc, cCo_in},

{cRo, cCo_out, cKr, cKc, cCo_in},
{cCo_out, cRo, cKc, cKr, cCo_in});

fuse(cCo_in, “op1”, inM);

layout( “op1”, Column, Row , Column);
vectorization( “op1”,Vec_inM);

ConstVar B,Ni,No,Kr,Kc,Ri,Ci; 
Tensor A(Ri, Ci, Ni, B), B(Kr, Kc, No, Ni), 

C(Ro, Co, No, B);
Iter cRo(Ro), cCo(Co), cKr(Kr), cKc(Kc);
conv = compute({cRo, cCo, cKr, cKc},

gemm_op(“op1”, 
B, No, Ni, 
A(cRo+cKr, cCo+Kc),  
B(cKr,  cKc), 
C(cRo, cCo) );

for cRo in range(0:Ro)
for cCo in range(0:Co)

for cKr in range(0:Kr)
for cKc in range(0:Kc)
𝐠𝐞𝐦𝐦_𝐨𝐩(

inM=B, inN=No, inK=Ni,
𝐀 cRo + cKr, cCo + cKc ,
𝐁(cKr, cKc),
𝐂 cRo, cCo )   

for cCo
out in range(0:Co)

for cRo in range(0:Ro)
for cKr in range(0:Kr)
for cKc in range(0:Kc)
𝐠𝐞𝐦𝐦_𝐨𝐩(
inM= SCo ×B, inN=No, inK=Ni,

𝐀 cRo + cKr, cCo + cKc ,
𝐁(cKr, cKc),
𝐂 cRo, cCo ,
LDA: Column  //column major
LDB: Row  // row major
LDC: Column // column major

swVecDim: Vec_inM )   

𝐀 cRo + cKr, cCo
out × SCo + cKc

𝐁(cKr, cKc),

𝐂 cRo, cCo
out × SCo

𝐃𝐌𝐀_𝐂𝐆(A cRo, +cKr, cCo + cKc , SCo × B × Ni,

mem_to_spm)
𝐃𝐌𝐀_𝐂𝐆(B cKr, cKc , Ni × No, mem_to_spm)

𝐃𝐌𝐀_𝐂𝐏𝐄(
A cRo, +cKr, cCo + cKc , // source
Aspm // destination

mem_to_spm, // data copy direction

cid ×
Ni

8
× SCo × B + rid ×

SCo×B

8
, // CPE offset

SCo × B ×
1

8
, // block size 

SCo × B ×
7

8
, // stride size 

SCo × B × Ni ×
1

64
) // total size

one schedule strategy

DSL schedule seed

DSL schedule space

const variables

tensors

loop variables

computation

factor variables

schedule interfaces

𝐃𝐌𝐀_𝐂𝐆 C cRo, cCo , SCo × B × No, spm_to_mem

schedule seed

loops

Figure 4: The left part is an example of DSL of implicit-GEMM-based convolution. DSL schedule seed describes the compu-
tation, while DSL schedule space defines the schedule strategies. FactorVar defines a factor variable used in split function.
swATOP will automatically traverse all valid candidates of the factor. Since there are extremely numerous permutations of
a set, reorder requires explicit candidates. The middle-top is the IR seed lowered from DSL schedule seed, and the middle-
bottom is the lowered IR of one schedule strategy of schedule space. The right part is an example of DMA inference(Section
4.5.1). rid, cid is the row and column id of CPE in CG.

reordering the execution order of loops. Loop fusion merges multi-
ple loops into a single one, which can be considered as a reverse
operation of Split. Our loop fusion also can enlarge a specific dimen-
sion of GEMM primitives by merging loops into GEMM primitives.
If n independent matrix multiplications share the same input, then
they can be combined into one larger matrix multiplication with
an output n times larger.

4.3.2 Layout Transformation. Even if the loop structure is deter-
mined, there can be a variety of implementations using different
data layouts. Based on the loop transformation, there is room to
expand the schedule space by using layout transformation. The
data layout will affect the performance in two aspects. On one hand,
it affects the DMA memory access mode by changing parameters
such as contiguous memory block size, stride access length, and
so on. On the other hand, the layout of data inside SPM affects the
usage of GEMM primitive, such as parameter of leading dimension
and transposition information.

In order to achieve high DMA efficiency and meet the rules of
GEMM primitive usage, the layout transformation should follow
some rules. The dimensions corresponding to outer loops should
be placed as the high dimensions of data layout. The dimensions
used as parameters of GEMM primitives should be placed as the
leading dimensions.

4.3.3 Vectorization Transformation. The scheduling space can also
be further extended by different vectorization transformation. As
described in the Sec. 4.1, there are two ways to vectorize your
calculation even if you use the GEMM primitives for the same input
and output data. That is, either the M loop or the N loop in the
three loops in order of (M,N ,K) can be vectorized. Vectorization
can bring higher computing performance, but at the same time
introduce some restrictions on the length of loop. Sometimes we

have to consider the specific circumstances of the layout and choose
a feasible vector scheme.

4.4 Intermediate Representation
In order to support schedule transformation, following optimization
and code generation, we design an intermediate representation
(IR). The middle part of Fig. 4 shows a logical representation of
IR. The IR is an abstract syntax tree (AST) composed of a serial of
statement nodes, such as for,if-then-else, DMA, gemm_op and so
on. Each statement node consists of some attributes. For example,
for node contains attributes such as iter, min, max, and stride.
IR is designed to support flexible mutations. Schedule strategies
can be achieved by transforming the structure of IR and modifying
attributes of the nodes. Optimizations (Sec 4.5) are achieved by
mutating the IR structure.

Scheduler lowers each schedule strategy in schedule space into
an IR structure by applying transformations to seed IR lowered
from schedule seed (Fig 4, middle). These output IRs are used in
following optimization (Sec 4.5), performance predictions (Sec 4.6),
and code generation (Sec 4.7).

4.5 IR optimizer
IR optimizer is designed to optimize the output IRs of scheduler
by mutating the IR structures. In this section, we highlight three
optimization techniques in use: DMA inference, hiding memory
access latency, boundary processing.

4.5.1 DMA inference. Users do not need to explicitly provide DMA
information in the DSL. swATOP can automatically infer and inject
required DMA nodes with attributes into IR. The attributes that
the DMA node contains consist of source and destination memory
addresses, direction of data copy, offset to the mainmemory address,
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total size of the transferred data, block size of consecutive data,
and stride size of two contiguous blocks. As stated in Sec. 4.1, the
data required by GEMM primitives needs to be distributed across
SPMs of all CPEs in a CG. The offset attribute needs to be carefully
calculated to mark the address offset for each CPE.

We infer the DMA nodes for CPEs by first generating the DMA
for whole CG (Fig 4, right-bottom):

DMA_CG(addr, totalsize, direction)
addr, totalsize, direction denotes the base address (to be read
or written) on main memory, the total data size and the data copy
direction, respectively. Then, DMA node for CPEs can be easily
derived (Fig 4, right-top), i.e.,

DMA_CPE(source, destination, direction, offset, block,
stride, size)
size can be calculated by totalsize/64, and a buffer on SPM,
buf_spm, is implicitly allocated to cache the transferred data. If the
direction is from main memory to SPM, the source is set to addr,
otherwise, buf_spm. In a CG, CPE is identified by a pair of row and
column id – (rid, cid). offset, block, stride depends on
the (rid, cid) and layout information in IR. For example, assum-
ing that the input “A” is a two-dimensional, column-major (i.e.,
LDA=Column)matrix A(M, N). The matrix is divided into 8x8 grids,
and each CPE read the (rid, cid) tile. In details, block, stride
is set to M× 1

8, M× 7
8 , respectively. offset is set to (cid×N8 )×M +

rid×M8 . To reduce redundant data copy, DMA nodes are injected
into the IR as far as possible from gemm_op.

4.5.2 Hiding Memory Access Latency. Hiding memory access la-
tency is a common technique that improves execution performance
and resource utilization. swATOP automatically hides DMA latency
by software prefetching (double buffer) by allocating two identical
SPM buffers, one is used for computation and the other one is used
for data fetching. The key point of auto-prefetching is how to auto-
matically infer the memory address used by computation of the next
loop iteration. Auto-prefetching of swATOP is readily applicable to
loop nests in which the data access (e.g., memory address of DMA
nodes) is function of the enclosing loop variables and parameters. In
general, the input and output of arithmetic intensive DL operators
are hypercubes, resulting in constant parameters of data access
funcion. Consequently, data access can be considered as a func-
tion that maps value of enclosing loop variables onto the accessed
memory address, i.e., Φ(®I ) = addr , where ®I = (iter1, iter2, ..., iterk )
is the vector of enclosing loop variables, and addr is the address
of accessed data. As a result, inferring the next memory address
is equivalent to inferring the value of ®I in next iteration. For the
data access of each DMA node in IR, swATOP extracts ®I ,Φ, and
generates a nested if-then-else structure to infer the value of ®I
in next iteration. Then swATOP injects the generated structure and
a initializing DMA node into the IR to implement auto-prefetching.

4.5.3 Boundary Processing. Boundary issue occurswhen the length
of the loop cannot be divided by the split factor, and the bound-
ary data cannot be processed using the original tensorized primi-
tive. The boundary issue makes it more difficult to manually write
efficient and correct programs, due to complex code, redundant
computations and additional storage space.

swATOP employs two strategies to apply optimization for bound-
ary processing. First, if data of boundaries can be processed with
tensorized primitives of different parameters, swATOP is able to
generate code that automatically switches to call DMA and compu-
tation primitive using new parameter at the boundary. Second, if
the boundary size is too small to apply any tensorized primitives,
we apply a lightweight zero-padding to tensors to make it valid to
call a tensorized primitive. Traditional padding method is to allocate
a new storage buffer and copy the original data to it. In this way,
copying overhead is nontrivial. swATOP adopts a lightweight zero-
padding scheme by copying only boundary data to auxiliary buffers.
When processing the boundary data, it automatically switches to
the auxilary buffers, thus reducing the copy overhead.

4.6 Autotuner
Autotuner leverages a peformance model to identify the best can-
didate from all implementations. A naive design is a black-box
autotuner, which generates code for all schedule IRs and picks the
best one by collecting real execution time. However, since there
may be thousands of different schedules in a schedule space, the
black-box autotuner will take a long time. In order to quickly find
the best solution, based on the prior knowledge of the architectural
features, we propose a performance-model-based autotuner.

The SW26010 is a latency-orientedmany-core architecture.Work [23]
proposed a static performance model for it. Based on their analysis,
the execution time of a DL operator can be estimated by two parts:
time of DMA engine cost TDMA, and time of instruction execution
units cost Tcompute . To achieve a fast online performance estima-
tion, swATOP requires building cost models for them in advance.

Autotuner estimates DMA time according to the special memory
organization designed for cache-free architecture. CPEs access the
main memory in the unit of DRAM transaction. Therefore, the
occurredmemory transactions rather than data request size actually
reflect the effective DRAM throughput. Even if just 1 Byte of a
transaction is touched, the entire transaction will be transferred.
Our cost model of DMA is shown in Eq. (1), which is determined
by a latency term Tlatency (also known as start-up overhead) and
a transmission term calculated by the ratio of the total memory
access size to the theoretical peak memory bandwidth PEAK_BW.
block_num is the number of continuous access blocks. block_size
is the size of continuous access block in a strided memory access.
#CPE is the number of CPE participated in DMA access, which is
always 64 in our scenarios.waste_sizei is the waste data of the ith
memory access padded on left and right boundaries in memory
transactions. We assume the first block size is 128 Byte aligned, and
waste_size of each block can be inferred by the stride size.

TDMA = Tlatency +

∑block_num
i=1 block_size +waste_sizei

PEAK_BW /#CPE
(1)

Tcompute consists of the clock cycles cost on issuing instructions,
and the idle cycles arisen from the Read After Write (RAW) hazard
of instruction scheduling. By our instruction pipelining scheme
mentioned in the Appendix, there should be no idle cycles in the
innermost loop of GEMM primitive. However, there are still extra
cycles wasted on initialization and finalization of the innermost
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loop, the overhead of outer loops, and the latency to switch reg-
ister communication pattern. Fortunately, given a vectorization
approach, it is a linear function of three dimension parameters
M,N ,K , and irrelevant to data layout. We fit a linear function to
estimate the computation time by collecting the execution time
of GEMM operations using different dimension parameters. Eq.(2)
shows the linear function to estimate a single GEMM primitive
execution time. The loop order from the innermost to outermost is
defined as K ,M , N . vecM is a 0/1 value to indicate whether to do
vectorization onM , otherwise do vectorization on N .

TSPM_GEMM = αK + β
KM

vecM × 4
+ γ

KMN

4
+ δ . (2)

Tcompute can be calculated by summing TSPM_GEMM of all in-
volved iterations.

Because DMA works in asynchronous way and we adopt soft-
ware prefetching to overlap DMA and calculation, the total ex-
ecution time Toverall is the maximum of TDMA,Tcompute . Our
performance-based autotuner first calculates the estimated perfor-
mance of all implementations and chooses the best one to generate
code.

4.7 code generator
Code generator is used to lower the IR into C and assembly code.
Code generator performs some memory relative optimizations. For
example, code generator analyzes the memory usage information
in the IR and allocates all buffers into a single coalesced region.

5 EXPERIMENTAL RESULTS
5.1 Performance Evaluation
5.1.1 Evaluation of Convolution Operators. We compare the con-
volution (CONV) operators generated by swATOP with the best
manual implementations, i.e. swDNN [7] for the Implicit CONV,
and xMath [9] for GEMM routines in the Winograd and the Explicit
CONV methods. For each CONV operator, we test performance
when the batch-size is 1 (for inference), 32 and 128 (for training).

Cases in classic CNNs. We first investigate CONV operators
in 3 classic convolutional neural networks (CNNs): VGG16 [19],
ResNet [8], and Yolo [17]. Fig. 5 shows performance improvement
on Implicit CONV. Designing Implicit CONV of batch-size=1 is
complicated, there is currently no manually optimized version
in swDNN. The swATOP is able to bridge such gap, and achieve
similar performance as big batch versions. For the cases of batch-
size=32,128 which can be compared, swATOP performs always
better than swDNN, and the average speedup is up to 1.44,1.32,
respectively. Fig. 6 shows performance improvement on Winograd
CONV. swATOP acheives an average speedup of 2.20, 2.35, 2.33 for
batch-size=1,32,128. Fig. 7 shows performance on Explicit CONV. In
43 different cases, swATOP is better in 40 cases of batch-size=1, 29
cases of batch-size=32, and 32 cases of batch-size=128, and the best
speedup is up to 15.2. The significant performance improvement of
Winograd and Explicit CONV is mainly due to the fact that swATOP
can figure out the best schedule strategies and dynamically picks
the optimal tensorized primitives according to parameters. It can be
seen that the speedup of small batch in Implicit and Explicit CONV
is slightly greater than those of big batch. This proves the stability

of swATOP to handle all cases, while manually optimized version
focus on big-batch cases that have sufficient workload.
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Figure 5: Performance improvement of swATOP for Implicit
CONV on convolution layers of three networks (except the
first layer of each network, because its input channel (Ni) is
too small to be handled by implicit CONV).
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Figure 6: Performance improvement of swATOP on layers
which Winograd CONV can be used.
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Figure 7: Performance improvement of swATOP for Explicit
CONV on convolution layers of three networks.

Table 1: Evaluation on 225 parameter configurations. Faster
(Slower) means swATOP is faster (slower) than the best man-
ual version. Items indicates #cases(avg. speedup).

Batch 1 32 128
Faster Slower Faster Slower Faster Slower

Implicit 75(+∞%) 0 75(+45%) 0 75(+44%) 0
Explicit 54(+21%) 21(-17%) 59(+23%) 16(-%22) 55(+26%) 20(-22%)
Winograd 75(+316%) 0 75(+295%) 0 75(+306%) 0
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Figure 8: The overall performance and efficiency of three
type of CONV operators with 225 parameters.

1 f o r B in 1 32 1 2 8 ;
f o r Ni in 64 128 256 384 5 1 2 ;

3 f o r No in 64 128 256 384 5 1 2 ;
f o r Ro in 32 64 128 2 5 6 ;

5 i f [ $Ni >= $No ] . / test_swATOP $B $Ni $No $Ro

Listing 1: Parameter configurations for general test cases.

Cases for testing versatility.We benchmark swATOP for its
versatility using the 225 parameter configurations produced from
the script as List. 1. Tab. 1 summarizes the comparison between
swATOP and the best handcrafted implementations. swATOP beats
the manually optimized version in over 84% scenarios (100% in
both Explicit and Winograd CONV and 75% in Explicit CONV).
Note that a few cases of swATOP on Explicit CONV are slower
than manual version, because these cases are large enough and just
perfectly match the customized optimizations of manual version.
Moreover, the average performance degradation (less than 25% for
Explicit CONV) caused by swATOP is not significant compared
to the performance improvement it brings (more than 300% for
Winograd CONV).

Fig. 8 shows the performance and efficiency of swATOP indi-
vidually. As can be seen, swATOP obtains high efficiency over
different parameter configurations. On average, over 2.1 TFLOPS
(70% efficiency) is obtained for Implicit CONV for both inference
and training cases. The variance of Winogard method performance
is relatively large. The best efficiency of Winograd is near 120%
(Since the throughtput of Winograd method is evaluated using the
number of GFLOPS required by direct convolution, the efficiency
may exceed 100%). For training tasks, the average throughput is
over 1.9 TFLOPS (60%) efficiency. For inference tasks, the efficiency
is over 1 TFLOPS, due to the increasing of proportion of pre- and
post-processing overhead. The average efficiency of Explicit CONV
is relative low, so we only use it for cases where the other two
methods cannot be applied.

5.1.2 Evaluation of Matrix-Multiplication. We evaluate the perfor-
mance of swATOP for Matrix-Multiplication on 559 parameters
generated from List. 2. Tab. 2 summarizes the performance compar-
ison between swATOP and xMath. swATOP outperforms xMath in
most cases, especially for unaligned parameters thanks to our opti-
mization for boundary processing. Moreover, the average speedups
brought by swATOP are up to 31.6% and 49.8%, while the perfor-
mance loss is just 6.6% and 4.3%. For general matrix shapes, swATOP
is able to to identify the most efficient schedule strategy and obtain
significant performance improvement than handcrafted routines.

However, for square-like matrix multiplications, which the xMath
optimization is targeted on, swATOP is slightly worse.

Table 2: Comparison between swATOP and xMath on Ma-
trix Multiplication. Faster (Slower) means swATOP is faster
(slower) than xMath.

Aligned Unaligned
Count Avg. Speedup Count Avg. Speedup

Faster 250 +31.6% 207 +49.8%
Slower 93 -6.6% 9 -4.3%

1 / / t e s t una l i gned pa rame t e r s r e q u i r i n g boundary p r o c e s s i n g
f o r M in 200 500 1000 2000 4000 8 0 0 0 ;

3 f o r N in 200 500 1000 2000 4000 8 0 0 0 ;
f o r K in 200 500 1000 2000 4000 8 0 0 0 ;

5 . / test_swATOP $M $N $K
/ / t e s t a l i g n e d pa rame t e r s wi thout boundary p r o c e s s i n g

7 f o r M in 256 512 768 1024 2048 4096 8 1 9 2 ;
f o r N in 256 512 768 1024 2048 4096 8 1 9 2 ;

9 f o r K in 256 512 768 1024 2048 4096 8 1 9 2 ;
. / test_swATOP $M $N $K

Listing 2: Parameters for Matrix-Multiplication test cases.

5.2 Evaluation of Autotuner
Taking the tuning process of the most complex Implicit CONV
operator as an example, we compare the time cost of performance-
model-based autotuner and a black-box autotuner by brute-force
searching. For a specific operator, The black-box autotuner runs
every single schedule strategy of the schedule space to identify
the optimal code, while our autotuner only runs the best strategy
identified by the performance model. As shown in Tab. 3, the black-
box autotuner costs 2∼3 days to tune CONV layers of an entire
CNN, while our autotuner only costs a few minutes. For a single
CONV operator, the black-box autotuner costs several hours, while
our autotuner costs less than 1 minute. The average speedups of
VGG16, ResNet, and Yolo are up to 454x, 353x, and 365x, respec-
tively. Moreover, tuning CONV operator on GPU using TVM costs
several hours, while our autotuner leverages the prior knowledge
of SW26010 and dramatically reduce the tuning time.

Table 3: Tuning time of Implicit CONV for layers of three
classic CNNs.

Space Size Black-box swATOP
Total Avg. Total Avg. Total Avg

VGG16 4068 454.2 47h 50m 5h 20m 6m 21s < 1m
ResNet 7064 353.7 83h 6m 4h 9m 14m 7s < 1m
Yolo 5112 365.1 60h 10m 4h 18m 9m 53s < 1m

Fig. 9 illustrates the differences between the optimal version iden-
tified by our autotuner and real best version found by brute-force
search on Implicit CONV. It shows the ratio of the performance of
swATOP to the real best performance. On average, the performance-
model-based autotuner brings less than 2% performance loss. Even
for the worse case, the performance loss is still less than 8%. Negli-
gible performance difference proves the high accuracy of our static
performance model.
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Figure 9: the ratio of the resulting performance of imple-
mentation generated by autotuner to the best performance
on 225 different parameters from List. 1.

5.3 Evaluation of IR optimizer
5.3.1 Hiding Memory Access Latency Evaluation. To evaluate the
improvement of our automatic memory latency hiding technique,
we compare the performance of auto-prefetching and a baseline
without software prefetching in Fig. 10. Given Ro,Co, we select 8
parameters where baseline version performs best. Even for the best
cases of baseline, software prefetching can significantly improve
performance by an average of 65.4%. This proves that automatical
software prefetching can highly improve the overall performance
on SW26010, and swATOP can exploit the ability of ovelapping
DMA and calculation.
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Figure 10: Auto-prefetching vs. Baseline.

zero-padding

lightweight zero-padding

m
-k

-n

8k-500-8k
4k-500-8k
8k-500-4k
500-4k-8k
8k-8k-500
8k-4k-500
4k-8k-500
500-8k-8k

500-8k-400
8k-200-8k
8k-200-4k
8k-8k-200

percent of padding time to total time

0% 5% 10% 15% 20% 25%
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5.3.2 Boundary Processing. We evaluate the padding overhead for
216 matrix multiplication benchmarks with code from unaligned
parameters test of List. 2. All cases require zero padding on all
three dimensionsM,N ,K . Fig. 11 presents the time of both light-
weight and traditional zero-padding of those cases whose boundary

processing overhead is more than 10%. Lightweight zero-padding
dramatically reduces the amount of data copied, and significantly
reduces the boundary processing overhead to less than 5%.

6 RELATEDWORK
There have been many previous works on optimizing DL operators
and generate code for various hardware (e.g., CPU, GPU, FPGA).

Glow [18] lowers DL operators into fine-grained operations, and
performs operator stack and memory reuse optimizations. TVM [5]
extracts context relation features of loops of DL operators, and
combines Halide [16] with a machine learning model to automati-
cally optimize operators on many devices. These frameworks ab-
stract the common techniques of optimization and aim at generate
code comparable to manually optimized libraries. On the one hand,
above frameworks leverage mature tool chains such as LLVM and
polyhedral tools, which usually have not been adapted to new
hardware like SW26010. On the other hand, due to the lack of
assembly level optimization, they cannot make full use of impor-
tant architecture-specific features, which are usually optimized in
handcrafted assembly language and play an important role in opti-
mization. swATOP leverages these architecture-specific features by
tensorized primitives, and can produce significantly more efficient
code than manually optimized versions. Moreover, TVM uses ma-
chine learning method to speedup autotuning. High performance
libraries, such as ATLAS [22], SPIRAL [15], widely used in scientific
computing area, use various optimization methods such as Powell
search, exhaustive search combined with pruning, evolutionary
search etc. swATOP adopts an efficient but effective performance
model to accelerate autotuning and obtains the best implementation
in minutes, while projects, like TVM, require several hours.

Polyhedral-based methods [2, 3] convert the nested loops to
affine space, and make efforts to find an high-level transformation
to maximize parallelism and locality, and minimize communication
cost. PPCG [21] deploys parallel code for CUDA. Pencil [1] presents
a DSL and can automatically generate optimizedOpenCL andCUDA
code. Recently, Tensor Comprehensions [20] uses polyhedral model
and genetic search techniques to autotune tensor operators on CPU
and GPU. Since there are no effective theory to express hardware
features with affine function, polyhedral-based methods are diffi-
cult to produce optimal implementation towards specific hardware.
swATOP takes advantage of both high-level transformation and
hardware features to generate best implementation in practice.

7 CONCLUSION
In this paper, we present an automated framework called swATOP
in combination with a tensorized algorithm abstraction to tune and
generate DL operators. It not only reduces huge engineering bur-
den of manual optimization, but also brings excellent performance
improvement. According to our experimental results, swATOP is
better than the best handcrafted code in 1095 of 1234 cases (over
88%) for CONV and GEMM operators. The performance-model-
based autotuner of swATOP is able to reduce tuning time cost of
a operator from hours to minutes and obtain an almost optimal
implementation (less than 8% in the worse case). Our method of
combining architecture-specific tensorized primitives and autotun-
ing techniques can be applied to other new hardwares.
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9 APPENDIX
This section shows our optimization onGEMMprimitive:C +=A×B,
whereA,B andC are resident in LDM space. As illustrated in Figure
12, our design leverages the following architectural characteristics.

Register Communication: The matrices are partitioned ver-
tically and horizontally in a uniform way into 64 pieces and dis-
tributed across the CPE cluster. Therefore, each CPE can only obtain
1/8 of the final result by performing GEMM using 1/64 local data.
To achieve the final result, remote data should be fetched by register
communication from CPEs located in the same row and column.
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Figure 12: Design overview of GEMM primitives.

Vectorization: To achieve the best performance, operations
should be conducted with vectorized MAC operation vmad. For
this reason, we used SIMD instructions for memory access. Two
sets of unique instructions of SW-ISA (Instruction Set Architecture)
are used. Set1: vlddr/vlddc are to load four floating-point (FP)
data from SPM as a vector and broadcast them through row/col-
umn communication bus. The dimension is accessed in this way
is called vectorized dimension. Set2: vlddec/vldder are to load a
single FP data from SPM, extend them into a vector of four copies
and broadcast them through row/column communication bus.

Register Blocking: To increase data reuse inside registers, a
4 × 4 register blocking scheme [7] is adopted. 16 element vectors of
matrixC is fixed in registers during the execution of the innermost
loop, so as to reduce repeated read and write.

Pipelining Instruction Execution: Our GEMM primitive is
able to fully utilize instruction execution units. It is able to finish
16 vmad operations in 16 cycles by carefully avoiding Read After
Write hazard, as well as increasing instruction-level parallelism of
two instruction execution pipelines.

The GEMM design adopting the above optimization techniques
has eight variants considering the following differences. First,
both A and B in SPM can be stored in column-major or row-major

layout. Second, the dimension to apply vectorization can be differ-
ent. Third, vectorization may be achieved along the nested loop
dimensionsM or N . We have adopted a template-based method to
generate eight different optimized assembly kernels.
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