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Large-Scale Automatic K-Means Clustering for
Heterogeneous Many-Core Supercomputer
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Abstract—This paper presents an automatic k-means clustering solution targeting the Sunway TaihuLight supercomputer. We first
introduce a multi-level parallel partition approach that not only partitions by dataflow and centroid, but also by dimension, which unlocks
the potential of the hierarchical parallelism in the heterogeneous many-core processor and the system architecture of the
supercomputer. The parallel design is able to process large-scale clustering problems with up to 196,608 dimensions and over 160,000
targeting centroids, while maintaining high performance and high scalability. Furthermore, we propose an automatic hyper-parameter
determination process for k-means clustering, by automatically generating and executing the clustering tasks with a set of candidate
hyper-parameter, and then determining the optimal hyper-parameter using a proposed evaluation method. The proposed
auto-clustering solution can not only achieve high performance and scalability for problems with massive high-dimensional data, but
also support clustering without sufficient prior knowledge for the number of targeted clusters, which can potentially increase the scope
of k-means algorithm to new application areas.

Index Terms—Supercomputer, Heterogeneous Many-core Processor, Data Partitioning, Clustering, Scheduling, AutoML
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1 INTRODUCTION

K-means is a well-known clustering algorithm, used
widely in many AI and data mining applications, such
as bio-informatics [2], [25], image segmentation [10], [24],
information retrieval [38] and remote sensing image analysis
[27].

For modern big-data applications, an intelligent cluster-
ing solution usually facing two major challenges. Firstly,
finding the optimal solution for a general k-means problem
is known to be NP-hard [13]. Thus, current high-end k-
means applications are limited in terms of the number of
dimensions (d), and the number of centroids (k) they can
consider, leading to demand for more parallel k-means
implementations [3], [27]. Secondly, to determine proper
hyper-parameters, such as the targeted number of centroids
(k) in k-means, are one of the toughest problems especially
in newly involved application areas, due to the massive
raw data without sufficient prior knowledge for clustering.
This also leading to an emerging research topic known
as AutoML [19]. However, existing AutoML systems are
mostly focused on designing the optimization algorithms
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for hyper-parameter searching, and are limited by the scale
of targeted problems.

In this paper, we present an auto-clustering solution
based on a supercomputer system. Targeting the above
challenges, we make the following two main contributions.

We propose a novel parallel design of k-means with
multi-level partition targeting Sunway TaihuLight, one of
the world’s fastest supercomputers. This design allows k-
means to scale well across a large number of compu-
tation nodes, significantly outperforming previously pro-
posed techniques. Evaluation results show that the pro-
posed design is able to process large-scale clustering prob-
lems with up to 196,608 dimensions and 160,000 centroids,
while maintaining high performance and scalability, which
is a large improvement on previous implementations, as
described in Table 1.

Furthermore, we propose and implement an auto-
clustering process based on the parallel algorithm design,
including four new features: a) a task generator to automat-
ically generate clustering tasks according to a number of
candidate hyper-parameters; b) a self-aware method to do
the automatic dataflow partition for the generated tasks; c)
a fairness resource allocator with a task scheduler to launch
the clustering tasks to the supercomputer system; d) an
evaluation method to determine the best hyper-parameter
candidate based on the clustering results.

With a highly scalable algorithm design and an auto-
matic hyper-parameter determination process, our method
can greatly increases the potential scope for k-means appli-
cations to solve previously intractable problems.

The rest of this paper is organized as follows: Section 2
describes the background and related work which includes
a short description of Sunway supercomputer and the k-
means problem definition, the most popular Lloyd algo-
rithm and general parallel implementation, and the state-
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Fig. 1. The general architecture of the SW26010 many-core processor

of-the-art supercomputer-oriented designs in the literature.
Section 3 discusses the three levels scalable design and im-
plementation of k-means on Sunway. Section 4 discusses the
auto-clustering process design and implementation. Evalu-
ation results and analysis are given in Section 5.

2 BACKGROUND

2.1 Sunway TaihuLight and SW26010 Many-Core Pro-
cessor
Sunway TaihuLight is a world-leading supercomputer,
which currently ranks as the third in the TOP500 list [30]
and achieves a peak performance of 93 petaflops [17].

Sunway TaihuLight uses the SW26010 many-core proces-
sor. The basic architecture of SW26010 is shown in Figure 1.
Each processor contains four core groups (CGs). There are 65
cores in each CG, 64 computing processing element (CPEs) and
a managing processing element (MPE), which are organized
as 8 by 8 mesh. The MPE and CPE are both complete 64-
bit RISC cores, but they are assigned different tasks while
computing. The MPE is designed for management, task
schedule, and data communications. The CPE is assigned
to maximize the aggregated computing throughput while
minimize the complexity of the micro-architecture.

The SW26010 design differs significantly from the other
multi-core and many-core processors: (i) for the memory hi-
erarchy, while the MPE applies a traditional cache hierarchy
(32-KB L1 instruction cache, 32-KB L1 data cache, and a 256-
KB L2 cache for both instruction and data), each CPE only
supplies a 16-KB L1 instruction cache, and depends on a 64
KB Local directive Memory (LDM) (also known as Scratch Pad
Memory (SPM)) as a user-controlled fast buffer. The user-
controlled ’cache’ leads to some increasing programming
difficulties for using fast buffer efficiently, at the same time,
providing the opportunity to implement a defined buffering
scheme which is beneficial to improve the whole perfor-
mance in certain cases. (ii) As for the internal information of
each CPE mesh, we have a control network, a data transfer
network (connecting the CPEs to the memory interface), 8
column communication buses, and 8 row communication
buses. The 8 column and row communication buses pro-
vide possibility for fast register communication channels to
across the 8 by 8 CPE mesh, so users can attain a significant
data sharing capability at the CPE level.

2.2 Problem Definition
The purpose of the k-means clustering algorithm is to find
a group of clusters to minimize the mean distances between

samples and their nearest centroids. Formalized, given n
samples, X d = {xd

i | xd
i ∈ Rd, i ∈ {1, ..., n}}, where each

sample is a d-dimensional vector xd
i = (xi1,. . . , xid) and we

use u to index the dimensions: u ∈ {1 . . . d}. We aim to find
k d-dimensional centroids Cd = {cdj | cdj ∈ Rd, j ∈ {1 . . . k}}
to minimize the object O(C):

O(C) =
1

n

n∑
i=1

dis(xd
i , c

d
a(i))

Where a(i) = arg minj∈{1...k}dis(xd
i , c

d
j ) is the index of the

nearest centroid for sample xd
i , dis(xd

i , c
d
j ) is the Euclidean

distance between sample xd
i and centroid cdj :

dis(xd
i , c

d
j ) =

√√√√ d∑
u=1

(xiu − cju)2

In the literature, several methods have been proposed to
find efficient solutions [6], [12], [15], [32], [33], [36]. While
the most popular baseline is still the Lloyd algorithm [31],
which is composed by repeating the basic two steps below:

1. : a(i) = arg minj∈{1...k} dis(x
d
i , c

d
j ) (Assign)

2. : cdj =

∑
arg a(i)=j x

d
i

|arg a(i) = j|
(Update)

We also need to chose an initial set of centroids. Note that
those notations here are mainly from previous works by
Hamerly [21], Newling and Fleuret [32]. We will apply cus-
tomized notations only when needed. The first step above
is to assign each sample into the nearest centroid according
to the Euclidean distance. The second step is to update the
centroids by moving them to the mean of their assigned
samples in the d-dimensional vector space. Those two steps
are repeated until each cdj is fixed.

2.3 Related Works

2.3.1 General Parallel k-means

k-means algorithm has been widely implemented in paral-
lel architectures with shared and distributed memory using
either SIMD or MIMD model targeting on multi-core proces-
sors [5], [14], [20], GPU-based heterogeneous systems [28],
[39], [41], clusters of computer/cloud [11], [22].

In the parallel case, we use l to index the processors
(computing units) P (P = {Pl}, l ∈ {1 . . .m}), and use m to
denote the total number of processors applied. The dataset
X d is partitioned uniformly into m processors. Compared
with Lloyd algorithm, each processor is assigns a subset ( n

m )
of samples from the original set X d before the Assign step.

To facilitate communication between computing units,
the Message Passing Interface (MPI) library is mostly ap-
plied in common multi-core processor environments. Per-
formance nearly linearly increases with the limited number
of processors as the communication cost between processes
can be ignored in the non-scalable cases, as demonstrated
in [14]. Similarly, the Update steps are finished by m pro-
cessors in parallel through MPI as well. Processors should
communicate with each other before the final cdj can be
updated.
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TABLE 1
Parallel k-means Implementations

Approaches Hardware Programming model Samples n Clusters k Dimensions d
General Parallel k-means Implementations

Böhm, et al [5] Multi-core MIMD/SIMD 107 40 20
Hadian and Shahrivari [20] Multi-core multi-thread 109 100 68
Zechner and Granitzer [41] GPU CUDA 106 128 200
Li, et al [28] GPU CUDA 107 512 160
Haut, et al [22] Cloud OpenStack 108 8 58
Cui, et al [11] Cluster Hadoop 105 100 9

Supercomputer-Oriented k-means Implementations
Kumar, et al [27] Jaguar, Oak Ridge MPI 1010 1000 30
Cai, et al [7] Gordon, SDSC mclappy (parallel R) 106 8 8
Bender, et al [3] Trinity, NNSA OpenMP 370 18 140,256
Our approach Sunway, Wuxi DMA/MPI 106 160,000 196,608

2.3.2 Large-scale Parallel k-means on Supercomputers

In addition to general parallel k-means implementations,
other customized k-means implementation targeting on
supercomputers are more related to our work here.

Kumar, et al [27] implemented the dataflow-partition
based parallel k-means on the Jaguar, a Cray XT5 su-
percomputer at Oak Ridge National Laboratory evaluated
by real-world geographical datasets. Their implementation
applys MPI protocols to achieve broadcasting and reducing
and originally scaled the value of k to more than 1,000s level.

Cai, et al [7] designed a similar parallel approach on
Gordon, a Intel XEON E5 supercomputer at San Diego
Supercomputer Center for grouping game players. They
applied a parallel R function, mclapply, to achieve shared-
memory parallelism and test different degree of parallelism
by partitioning the original data-flow into different numbers
of sets. They did not focus on testing the scalability of their
approach but evaluated on the quality of the cluster.

Bender, et al [3] investigated a novel parallel implemen-
tation proposed for Trinity, the latest National Nuclear
Security Administration supercomputer with Intel Knight’s
Landing processors and their scratchpad two-level memory
model. Their approach is the most state-of-the-art compara-
ble work against our proposed methods which can not only
partition dataflow, but also partition the number of target
clusters k by their hierarchical two-level memory support
- cache associated with each core and scratchpad for share.
Adapted originally from [18], their partitioning algorithm
partitioned the input dataset into nd

M sets, where M is the
size of the scratchpad, and then reduced k nd

M centroids
recursively if needed. Based on this partition, their approach
scaled d into 100,000s level.

A fundamental bottleneck in their approach is that based
on only two-level memory, it is still impossible to partition
and then scale both k and d independently. This leads to the
interaction constraint between k and d as discussed in their
paper:

Z < kd < M

where Z is the size of cache. This partition-based method
is not efficient if all k centroids could fit into one cache. In
practice, this limits the value of k to be less than 18 and d
to be greater than 152,917 in their experiments. We claim
that our proposed approach with underlining data parti-
tioning methods based on hierarchical many-core processors

Fig. 2. Three-level k-means design for data partition and parallelism on
Sunway architecture

achieves the needed multi-level fully nkd partition with
architectural support to thoroughly solve this bottleneck.

We formalize the background work of both general
parallel k-means and supercomputer-oriented implementa-
tions as shown in Table 1.

3 MULTI-LEVEL LARGE-SCALE k-means DESIGN

The scalability and performance of parallel k-means algo-
rithm on large-scale heterogeneous systems and supercom-
puters are mainly bounded by the memory and bandwidth.
To achieve efficient large-scale k-means on the Sunway
supercomputer, we explore the hierarchical parallelism on
our heterogeneous many-core architecture. We demonstrate
the proposed scalable methods on three parallelism levels
by how we partition the data.

• Level 1 - DataF low Partition: Store a whole sample
and k centroids on single-CPE

• Level 2 - DataF low and Centroids Partition: Store
a whole sample on single-CPE whilst k centroids on
multi-CPE
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• Level 3 - DataF low, Centroids and Dimensions
Partition: Store a whole sample on multi-CPE whilst
k centroids on Multi-CG and d dimensions on Multi-
CPE

An abstract graph of how we partition the data into
multiple levels is presented in Figure 2.

3.1 Level 1 - DataFlow Partition

Algorithm 1 Basic Parallel k-means

1: INPUT: Input dataset X = {xi|xi ∈ Rd, i ∈ [1, n]}, and
initial centroid set C = {cj |cj ∈ Rd, j ∈ [1, k]}

2: Pl
load←−−− C, l ∈ {1 . . .m}

3: repeat
4: // Parallel execution on all CPEs:
5: for l = 1 to m do
6: Init a local centroids set Cl = {clj |clj = 0, j ∈ [1, k]}
7: Init a local counter countl = {countlj |countlj =

0, j ∈ [1, k]}
8: for i = (1 + (l − 1) ∗ n

m ) to (l ∗ n
m ) do

9: Pl
load←−−− xi

10: a(i) = arg minj∈{1...k}dis(xi, cj)
11: cla(i) = cla(i) + xi

12: countla(i) = countla(i) + 1
13: end for
14: for j = 1 to k do
15: AllReduce clj and countlj

16: clj =
clj

countlj
17: end for
18: end for
19: until Cl == C
20: OUTPUT: C

In the simple case, we run the first step, Assign, on
each CPE in parallel while using multi-CPE collaboration
to implement the second step, Update. The pseudo code of
this case is shown in Algorithm 1.

The Assign step is implemented in a typical parallel
way. Given n samples, we partition into multiple CPEs.
Each CPE (Pl) firstly reads one sample xi and finds the
minimum distances dis from itself to all centroids cj to
obtain a(i). Then two variables are accumulated for each
cluster centroid cj according to a(i), shown in line 11 and
12. The first variable stores the vector sum of all the samples
assigned to cj , notated as cla(i). The second variable counts
the total number of samples assigned to cj , notated as
countla(i).

In the Update step, we first accumulate the clj and
countlj of all CPEs by performing two AllReduce opera-
tions, so that all CPEs can obtain the assignment results of
the whole input dataset. We use register communication
[43] to implement intra-CG AllReduce operation and use
MPI AllReduce for inter-CG AllReduce. After the accu-
mulation, the Update step is performed to calculate new
centroids, as shown in line 15.

Analysis
Considering a one-CG task, we analyse the constraints on
scalability in terms of memory limitation of each CPE. Based

on the steps above, one CPE has to accommodate at least one
sample xi, all cluster centroids C, k centroids’ accumulated
vector sum Cl and k centroids’ counters countl. Considering
that each CPE has a limited size of LDM, we obtain the
constraint (C1) below:

C1 : d(1 + k + k) + k ≤ LDM

Since both the number of centroids k and the dimension d
for each sample xi should at least be 1, we obtain two more
boundary constraints (C2) and (C3) below, separately:

C2 : 3d + 1 ≤ LDM

C3 : 3k + 1 ≤ LDM

Now we analyse the performance under bandwidth bounds.
Note that the Assign step of computing a(i) for each sample
xi is completed fully in parallel on the m CPEs. Given the
bandwidth of multi-CPE architecture to be B, the DMA
time of reading data from main memory can be simply
formalized as:

Tread : (
n ∗ d
m

+ k ∗ d)/B

Theoretically, a linear speedup for computing time to
at most n times against the serial implementation can be
obtained for the Assign step if we can apply m = n CPEs
in total.

The two AllReduce operations are the bottleneck process
in the Update step. The register communication technique
for internal multi-CPE communication guarantees a high-
performance with a normally 3x to 4x speedup than other
on-chip and Internet communication techniques (such as
DMA and MPI) for this bottleneck process (referring to the
experimental configuration section for detailed quantitative
values). Given the bandwidth of register communication
to be R, the time for the AllReduce process can be formal-
ized as:

Tcomm :
n

m
((1 + d) ∗ k)/R

3.2 Level 2 - DataFlow and Centroids Partition

To scale the number of k for cluster centroids C, we use
multiple (up to 64) CPEs in one CG to partition the set of
centroids. The number of CPEs grouped to partition the
centroids is denoted by mgroup. For illustration, we use l′

to index the CPE groups {P}. Then we have:

{P}l′ := {Pl}, l ∈ (1 + (l′ − 1) ∗mgroup, l
′ ∗mgroup)

The pseudo code of this case is shown in Algorithm 2. To
partition k centroids on mgroup CPEs, we need to do a
new sub-step against the previous case as shown in line
2. Then different from the Assign step in above case, we
partition each data sample xi in each CPE group as shown
in line 8. After that, all Pl in each {P}l′ can still compute
a partial value of a(i) (named as a(i)′) fully in parallel
without communication. We need to do one more step by
data communication between CPEs in each CPE group to
obtain the final a(i) as shown in line 10.

Then the Update step is similar to previous case. We just
view one CPE group as one basic computing unit, which
conducts what a CPE did in the previous case. Each CPE
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Algorithm 2 Parallel k-means for k-scale

1: INPUT: Input dataset X = {xi|xi ∈ Rd, i ∈ [1, n]}, and
initial centroid set C = {cj |cj ∈ Rd, j ∈ [1, k]}

2: Pl
load←−−− cj j ∈ (1 + mod( l−1

mgroup
) ∗

k
mgroup

, (mod( l−1
mgroup

) + 1) ∗ k
mgroup

)
3: repeat
4: // Parallel execution on each CPE group {P}l′ :
5: for l′ = 1 to m

mgroup
do

6: Init a local centroids set Cl′ and counter countl
′

7: for i = (1 + (l′ − 1)
n∗mgroup

m ) to (l′
n∗mgroup

m ) do

8: {P}l′
load←−−− xi

9: a(i)′ = arg minj dis(xi, cj)
10: a(i) = min. a(i)′

11: cl
′

a(i) = cl
′

a(i) + xi

12: countl
′

a(i) = countl
′

a(i) + 1
13: end for
14: for j = (1 + mod( l−1

mgroup
) ∗ k

mgroup
) to

((mod( l−1
mgroup

) + 1) ∗ k
mgroup

) do

15: AllReduce cl
′

j and countl
′

j

16: cl
′

j =
cl

′
j

countl
′
j

17: end for
18: end for
19: until ∪ Cl′ == C
20: OUTPUT: C

only computes values of subset of centroids C and does not
need further communications in this step as it only needs to
store this subset.

Analysis
To analyse the scalability of k in this case, the amount of
original k centroids distributed in mgroup CPEs leads to a
easier constraint of k against the (C3) above:

C′3 : 3k + 1 ≤ mgroup ∗ LDM (mgroup ≤ 64)

Based on this, we can also easily scale the (C1) as follow:

C′1 : d(1 + k + k) + k ≤ mgroup ∗ LDM (mgroup ≤ 64)

Note that we still need to accommodate at least one d-
dimensional sample in one CPE, so the (C2) should be kept
as before: C′2 := C2

As for performance, since mgroup CPEs in one group
should read the same sample simultaneously, the processors
need more time to read the input data samples than the first
case, but only partial cluster centroids need to be read by
each CPE:

T′read : (
n ∗ d ∗mgroup

m
+

k

mgroup
∗ d)/B

As for the data communication needed, there is one more
bottleneck process (line 12) than before. Comparing against
the above cases, multiple CPE groups can be allocated in
different processors. Those communication need to be done
through MPI which is much slower than internal processor
multi-CPEs register communication. Given the bandwidth
of network communication through MPI to be M , we obtain:

T′comm :
k

mgroup
/R +

n ∗mgroup

m
((1 + d) ∗ k))/M

3.3 Level 3 - DataFlow and Centroids and Dimensions
Partition

Algorithm 3 Parallel k-means for k-scale and d-scale

1: INPUT: Input dataset X = {xi|xi ∈ Rd, i ∈ [1, n]}, and
initial centroid set C = {cj |cj ∈ Rd, j ∈ [1, k]}

2: CGl′′
load←−−− cdj , l

′′ ∈ {1 . . . m
64}, j ∈ (1 + mod( l′′−1

m′
group

) ∗
k

m′
group

, (mod( l′′−1
m′

group
) + 1) ∗ k

m′
group

)
3: repeat
4: // Parallel execution on each CG group {CG}l′′ :
5: for l′′ = 1 to m

64 do
6: Init a local centroids set Cl′′ and counter countl

′′

7: for i = (1 + (l′′ − 1)
n∗m′

group

m ) to (l′′
n∗m′

group

m ) do
8: for u = (1+mod( l−1

64 )∗ d
64 to (mod( l−1

64 )+1)∗ d
64 )

do
9: CGl′′ ← xi (Pl ← xu

i )
10: end for
11: a(i)′ = arg minj dis(xi, cj)
12: a(i) = min. a(i)′

13: cl
′′

a(i) = cl
′′

a(i) + xi

14: countl
′′

a(i) = countl
′′

a(i) + 1
15: end for
16: for j = (1 + mod( l′′−1

m′
group

) ∗ k
m′

group
) to

((mod( l′′−1
m′

group
) + 1) ∗ k

m′
group

) do

17: AllReduce cl
′′

j and countl
′′

j

18: cl
′′

j =
cl

′′
j

countl
′′
j

19: end for
20: end for
21: until ∪ Cl′′ == C
22: OUTPUT: C

To scale the number of dimension d for each sample
xi and further scale k, we store and partition one d-
dimensional sample by one CG with 64 CPEs and then
implement the algorithm on multiple CGs. The pseudo code
of this case is shown in Algorithm 3.

Recall we use u to index the data dimension: u ∈
(1 . . . d); Now we use l′′ to index the CGs and m′group to
denote the number of CGs grouped together to partition
k centroids. Consider that we apply m CPEs in total and
each CG contains 64 CPEs, then we have l′′ ∈ (1, . . . , m

64 ),
m′group ≤ m

64 and:

CGl′′ := {Pl}, l ∈ (1 + 64(l′′ − 1), 64l′′)

To partition k centroids on multiple CGs, we obtain an
updated step against the previous case as shown in line 2.
To partition each d-dimensional sample xd

i on 64 CPEs in
one CG, we obtain the following step as shown in line 9.

Similar to the above case, all CGl′′ in each CG group
compute the partial value a(i)′ fully in parallel and then
communicate to obtain the final a(i). Multi-CG communi-
cation in multiple many-core processors (nodes) is imple-
mented through MPI interface. Then the Update step is also
similar to the previous case. Now we view one CG as one
basic computing unit. It conducts what one CPE did before.
We view what a CG group does as what a CPE group did
before.
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Analysis
In this case, each CG with 64 CPEs accommodates one d-
dimensional sample xi. Then we can scale the previous (C2)
as follow:

C′′2 : 3d + 1 ≤ 64 ∗ LDM

Consider we use totally m′group CGs to accommodate k
centroids in this case, then (C3) will scale as follow:

C′′3 : 3k + 1 ≤ m′group ∗ 64 ∗ LDM

Note that the domain of m′group seems limited by the total
number of CPEs applied, m. But in fact, this number can be
large-scale as we target on the supercomputer with tens of
millions of cores. Finally, (C1) will scale as follow:

C′′1 : d(1 + k + k) + k ≤ 64 ∗m′group ∗ LDM

which is equal to:

C′′1 : d(1 + k + k) + k ≤ m ∗ LDM

C′′1 is the breakthrough contribution over other state-of-
the-art work [3]: the total amount of d ∗ k is not limited by
a single or shared memory size any more. It is fully scalable
by the total number of processors applied (m). In a modern
supercomputer, this value can be large-scaled up-to tens of
millions when needed.

Considering performance, note that m′group CGs (64
CPEs in each) in one group should read the same sample
simultaneously. In another aspect, each CPE only needs to
read a partial of the given d-dimension of original data
sample together with a partial of k centroids similarly as
before, then we obtain a similar reading time:

T′′read : (
n ∗ d ∗m′group

m
+

k

m′group
∗ d

64
)/B (1)

Comparing against the above cases, multiple CGs in
CG groups allocated in different many-core processors need
communication to update centroids through MPI. Given the
bandwidth of network communication through MPI to be
M , the cost between multiple CG groups can be formalized
as:

T′′comm : (
k

m′group
+

n ∗m′group
m

((1 + d) ∗ k))/M (2)

The network architecture of Sunway TaihuLight is a
two-level fat tree. 256 computing nodes are connected via
a customized inter-connection board, forming a super-node.
All super-nodes are connected with a central routing server.
The intra super-node communication is more efficient than
the inter super-node communication. Therefore, in order to
improve the overall communication efficiency of our design,
we should make a CG group located within a super-node if
possible.

4 AUTO-CLUSTERING PROCESS

Based on the parallel k-means design, we further propose an
auto-clustering process to determining the optimal hyper-
parameter (k) for applications that is lack of prior clustering
knowledge. The key idea is that we can run the clustering
with a set of candidate hyper-parameters, and then provide

a method to evaluate the best candidate hyper-parameter(s)
based on the clustering results.

We first described the method to determine the optimal
hyper-parameter (k) for the k-means algorithm on a given
input set. Then we introduce our design to solve two prac-
tical problems - how to automatically select the data parti-
tioning method to process the workload when the value of k
changes, and how to allocate resources of a supercomputer
for different instances of the k-means algorithm.

4.1 Determinig the optimal k
The number of clustering (k) need to be predetermined
for typical k-means algorithms. As claimed in the survey
[42], how to define this value is a critical question in the
community, and inappropriate decision would yield poor
quality of clustering results.

Shi, et al. [37] proposed a basic method by gradually
increasing the possible number of clusters and used the
result when the distortion of solutions between current k
and k-1 is less than a static predefined threshold. Chen, et
al. [9] recently presented a method without any predefined
threshold. It generates a formula by computing the differ-
ence between sum of distance inside and outside clusters.

While this formulation didn’t work in large-scale cases
as it keeps monotonous increasing when the k is greater
than 2.

To solve this problem with a supercomputing-based
approach, we introduce the notion of cluster radius r(k)
to k-means clustering. To be specific, r(k) is defined to be
the smallest non-negative real number such that the sample
set X d can be covered by k closed balls centered at sample
points with radius r(k). In other words,

r(k) = inf{t : ∃y1, . . . , yk in Rd,X d ⊆
⋃

1≤s≤k
B(ys, t)},

where B(ys, t) stands for the Euclidean closed ball centered
at ys with radius t. For instance, when k = n the number of
samples, we have r(n) = 0. It is easy to see that r(k) is non-
increasing with respect to k. Radius has been widely used
in clustering problems, such as approximating clustering [1]
and incremental clustering [8], but not on k-means, because
it is impossible to compute and measure all possible radius
values on large-scale datasets. For n samples clustering into
k centroids, there will be O(nk) possible solutions.

With the support of modern supercomputer with effi-
cient parallel processing techniques, we apply an empirical
way by using a minim radius from a random selection of
solutions with k centroids, named r′(k) to represent the
r(k). With the increasing of k, the accurate of r′(k) will
decrease. The r′(k) will even increase at some point when
it is too difficult to give a show a reasonable representation
of r(k) by r′(k) from a limited selection of solutions. This
also indicates that to keep increasing the targeted centroids
(k) beyond this points becomes meaningless as it cannot
easily reduce the distance and distinguish the difference
from different clusters. So the idea of determining the best k
is by measuring the change of r′(k) with respect to r(k). If
r′(k) does not keep the same route of r(k), we would regard
this k as a satisfying choice. Rigorously speaking, let

∆r′(k) = r′(k)− r′(k + 1),
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Fig. 3. Self-aware Roofline Model for Auto Data Partitioning

then our optimal k is taken as the first time this function
∆r′ increasing.

4.2 Self-aware Auto Dataflow Partition
A self-aware method to auto partition dataflow into 3 levels
based on the targeting k values. This method is mainly
guided by the scalability of each level of data partition-
ing. Based on the limitations presented in formulations
(C1,C

′
1,C

′′
1) above, we can easy compute the range of

possible k values for each level: k ≤ LDM−d
1+2d for level-1,

k ≤ 64LDM−d
1+2d for level-2 and k ≤ m∗LDM−d

1+2d for level-3. By
concatenating the ranges, we obtain the self-aware 3-stage
roofline model to guide the data partitioning as shown in
figure 3.

4.3 Fairness Resource Allocation and Task Scheduler

Algorithm 4 Resource Allocation Algorithm
1: INPUT: Cost function T ′′(k,m,m′), number of CPEs p,

number of CPEs per CG q, number of points n
2: for i=1 to n/2− 1 do
3: mi = q; m′i = 0
4: end for
5: remProc = p− (n− 1) ∗ q
6: while remProc > 0 do
7: i = argminn−1

j=1 T
′′(j,mj ,m

′
j)

8: mi = mi + q; remProc = remProc −q
9: end while

10: for i=1 to k do
11: m′i = argminmi,j|mi

j=1 T ′′(i,mi, j)
12: end for
13: OUTPUT: {m1, . . . ,mn−1,m

′
1, . . . ,m

′
n−1}

Dividing the resources of a supercomputer between the
n/2 instances of the k-means algorithm can be looked at as
a scheduling problem, where we need to schedule n/2 het-
erogeneous tasks on a given set of resources. The tasks are
heterogeneous because, for different k, k-means algorithm
will do different partitioning of the data (see the previous

section) which yields different degree of parallelism and
different reading, computation and communication costs.
Therefore, dividing the resources uniformly between the
instances of the algorithm (tasks) will be sub-optimal. Fur-
thermore, it is not possible to statically compute the precise
cost of executing one instance of the algorithm on a given
set of resources because, in addition to the reading (equation
1) and communication (equation 2) time that can easily be
estimated, there is also a computation time that depends
on the number of iteration for a particular value of k and
a particular input, and this number cannot be computed
statically. Therefore, we need to use some heuristics for
resource allocation.

We will focus on resource allocation for level-3 par-
titioning, as that is the most complex of the three cases
we consider. The approach we take in this paper is to
use a cost function, T ′′(k,m,m′group), as an estimation of
the cost of executing an instance of k-means on m CPEs
and m′group CPE groups for each centroid. For brevity, we
will annotate m′group with m′. The scheduling problem can
then be seen as the optimisation problem of finding the
minimum of the function: A(m1, . . . ,mn

2
,m′1, . . .m

′
n−1) =∑n

2
i=1 T

′′(i,mi,m
′
i) with the following constraints: 1 ≤

mi ≤ p (for i ∈ {1, . . . , n
2 }),

∑n
2
i=1 mi ≤ p, 0 ≤ m′i ≤

p
q (for i ∈ {1, . . . , n

2 }),
∑n

2
i=1 m

′
i = p

q ,m
′
i|mi; (for i ∈

{1, . . . , n
2 } where p is the total number of CPEs and q is the

number of CPEs per group (64 in our case). Due to a way in
which the data partitioning is done, we will require each m
to cover at least one core group, i.e. to be a multiple of 641.
We use T ′′(k,m,m′) = T ′′read(k,m,m′) + T ′′comm(k,m,m′)
as a cost function, where T ′′read and T ′′comm are given in the
equations 1 and 2.

The algorithm that we use to solve the posed optimisa-
tion problem is given in Algorithm 4, which is based on a
greedy approach. Note that, in theory, for level-3 scheduling
we would need to consider allocation of individual CPEs
(level-1), CGs (level-2) and CG groups (level-3) to the in-
stances of the k-means algorithm. However, we will simplify
the problem by assuming that no CG will share its resources
between different instances of the algorithm. Therefore, the
basic unit of allocation will be CG. The parameters of the
algorithm are cost function, T ′′, number of available CPE
groups (CGs), p, number of CPEs per CG, q, and the number
of points n.

We initially allocate one CG and zero CG groups to each
of the n/2 instances of the k-means algorithm (lines 2–4).
Then, in successive iterations, we add one more CG to the
instance which has the highest cost (therefore reducing its
cost), until all of the CGs are allocated (lines 6–9). This,
effectivelly, gives us the assignment of m1,m2, . . . ,mn−1.
mi will be the number of CGs allocated to the instance i
multiplied by q (64 in our case). Once we have decided
on the number of CGs for instances, we divide these CGs
into CG groups, finding, for each instance, the grouping
that minimised T ′′ (line 11). This gives us the assignment
of m′1,m

′
2, . . . ,m

′
k.

If we assume that the number of CGs is a constant,
then Algorithm 4 is quadratic with respect to the number of

1. In other words, we are really allocating core groups to tasks, rather
than just individual CPEs
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TABLE 2
Benchmarks from UCI and ImgNet

Data Set n k d
Kegg Network 6.5E4 256 28
Road Network 4.3E5 10,000 4
US Census 1990 2.5E6 10,000 68
ILSVRC2012
(ImgNet)

1.3E6 160,000 196,608

ONCOLOGY and
LEukemia

4.3E3 unknown 54,675

points n. Considering that the number of points for the use
cases in Section 5 is of the order of magnitude of 1,000,000,
this is not overly expensive and can be calculated pretty
quickly. The algorithm, of course, does not find an optimal
allocation, as such allocation is impossible to calculate be-
cause the number of iterations that the algorithm takes for
each k takes is not known before the execution, but it still
manages to find good allocation of resources.

5 EVALUATION

5.1 Experimental Design and Metrics
The datasets we applied in experiments come from well-
known benchmark suites including UCI Machine Learn-
ing Repository [34] and ImgNet [23]. We briefly present
the datasets in Table 2, where the first three normal size
benchmarks (Kegg Network, Road Network, US Census 1990)
are from UCI and the final high-dimensional benchmarks
(ILSVRC2012) are from ImgNet.

The experiments have been conducted to demonstrate
scalability, high performance and flexibility by increasing
the number of centroids k and number of dimensions d on
multiple benchmarks with vary data size n. The three-level
designs are tested targeting different benchmarks. Different
hardware setup will be provided for testing different scal-
able levels:

• Level 1 - One SW26010 many-core processor is ap-
plied, which contains 256 64-bit RISC CPEs running
at 1.45 GHz, grouped in 4 CGs in total. 64 KB LDM
buffer is associated with each CPE and 32 GB DDR3
memory is shared for the 4 CGs. The theoretical
memory bandwidth for register communication is
46.4 GB/s and for DMA is 32 GB/s.

• Level 2 - Up-to 256 SW26010 many-core processors
are applied, which contains 1,024 CGs in total. The
bidirectional peak bandwidth of the network be-
tween multiple processors is 16 GB/s.

• Level 3 - Up-to 4,096 SW26010 many-core processors
are applied, which contains 16,384 CGs in total.

The main performance metric we are concerned with
here is one iteration completion time. Note that the total
number of iterations needed and the quality of the solution
(precision) are not considered in our experiments as our
work does not relate to the optimization of the underlining
Lloyd algorithm or the solution of k-means algorithm.

5.2 Performance and Analysis
We report the results of three different partition strategies:
Level 1 – a baseline single-level partition strategy, Level 2 –
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Fig. 4. Level 1 - dataflow partition

256 512 1,024 2,048 4,096
0

5 US Census 1990

6,250 12,500 25,000 50,000 100,000
0

5

10 Road Network

512 1,024 2,048 4,096 8,192

Number of centroids

0

0.1

0.2

O
ne

 it
er

at
io

n 
co

m
pl

et
io

n 
ti

m
e 

(s
)

Kegg Network

Fig. 5. Level 2 - dataflow and centroids partition

an implementation of a state-of-the-art two-level partition
strategy used in recent supercomputer implementations [3],
and Level 3 – our novel three-level partition strategy.

Since each partitioning strategy is only able to run suc-
cessfully at certain ranges of k and d, it is not possible to
compare them directly across the whole range benchmarks
as the benchmarks have limits in terms of dataset size. For
this reason, we first evaluate each strategy independently on
the most suitable benchmarks for the strategy in question to
show how each performs in the range for which they are
most suited. The second part of our evaluation compares
the partition strategies directly on benchmarks where the
possible range of k and d overlap. This shows how our
proposed Level 3 strategy scales significantly better than
Level 2 over varying k, d, and number of computational
nodes.

5.2.1 Level 1 - dataflow partition
The Level 1 (n-partition) parallel design is applied to three
UCI datasets (US Census 1990, Road Network, Kegg Network)
with their original sizes (n = 2,458,285, 434,874 and 65,554
separately) and data dimensions (d = 68, 4 and 28) for
cross number of target centroids (k). The purpose of these
experiments is to demonstrate the efficiency and flexibility
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Fig. 6. Level 3 - dataflow, centroids and data-sample partition

of this approach on datasets with relatively low size, dimen-
sions and centroid values. Figure 4 shows the one iteration
completion time for those datasets over increasing number of
clusters, k. As the number of k increases, the completion
time on this approach grows linearly.

5.2.2 Level 2 - dataflow and centroids partition
The level 2 (nk-partition) parallel design is applied to same
three UCI datasets as above, but for a large range of tar-
get centroids (k). The purpose of these experiments is to
demonstrate the efficiency and flexibility of the proposed
approaches on datasets with large-scale target centroids
(less than 100,000). Figure 5 shows the one iteration completion
time of the three datasets of increasing number of clusters,
k. As the number of k increasing, the completion time
from this approach grows linearly. We conclude that this
approach works well when one dimension is varied up to
the limits previously published.

5.2.3 Level 3 - dataflow, centroids and dimensions partition
The Level 3 (nkd-partition) parallel design is applied to a
subset of ImgNet datasets (ILSVRC2012) with its original
size (n = 1,265,723). The results are presented with varying
number of target centroids (k) and data dimension size (d)
with an extremely large domain. We also test the scalability
varying the number of computational nodes. The purpose of
these experiments is to demonstrate the high performance
and scalability of the proposed approaches on datasets with
large size, extremely high dimensions and target centroids.
Left hand side of Figure 6 shows the completion time of the
dataset of increasing number of clusters, k = 128, 256, 512,
1024 and 2,048 with increasing number of dimensions, d =
3,072 (32*32*3), 12,288 (64*64*3) and 196,608 (256*256*3).

To further investigate the scalability of our approach, we
test two more cases by either further scaling centroids by
certain number of data dimensions (d = 3,072) and number
of nodes (nodes = 128) or further scaling nodes applied
by certain number of data dimensions (d = 196,608) and
number of centroids (k = 2,000). The results of those two
tests are shown in the right hand side of Figure 6.

As both k and d increase, the completion time from
our approach continues to scale well, demonstrating our
claimed high performance and scalability.

5.2.4 Comparison of partition levels
In this section we experimentally compare the Level 2 ap-
proach with Level 3.

Figure 7(1) shows how one iteration completion time grows
as the number of dimensions increases. The Level 2 ap-
proach outperforms Level 3 when the number of dimen-
sions is relatively small. However, the Level 3 approach
scales significantly better with growing dimensionality, out-
performing Level 2 for all d greater than 2560. The Level
2 approach cannot run with d greater than 4096 in this
scenario due to memory constraints. However, it is clear
that, even if this problem were solved, the poor scaling
would still limit this approach. The completion time for
Level 2 falls twice unexpectedly between 1536 and 2048,
and between 2560 and 3072. This is due to the crossing
of communication boundaries in the architecture of the
supercomputer – the trend remains clear however.

Figure 7(2) shows how the one iteration completion time
grows as the number of centroids, k increases. Since the
number of d is fixed at 4096, the Level 3 approach actually
always outperforms Level 2, with the gap increasing as k
increases. This scaling trend is replicated at lower levels of d
too, though Level 2 initially outperforming Level 3 at lower
values of k.

Figure 7(3) shows how both Level 2 and Level 3 scale
across an increasing number of computation nodes. Level 3
clearly outperforms Level 2 in all scenarios. The values of k
and d are fixed, as described in the graph caption, at levels
which Level 2 can operate. The performance gap narrows
as more nodes are added, but remains significant. Clearly
the exact performance numbers will vary with other values
k and d, as can be inferred from other results, but the main
conclusion we draw here is that Level 3 generally scales
well.

5.2.5 Comparison with other architectures
As discussed, state-of-the-art supercomputing-oriented ap-
proaches are tested either on their specific datasets [7], [27]
or publish only their relative speedups [3] instead of execu-
tion times. It is not possible to compare our actual execu-
tion time with these supercomputing-oriented approaches
directly. Additionally, wallclock execution times are prob-
lematic to compare across vastly differing architectures with
different budgets.

To give some insight into the performance we obtain,
we compare execution time with other architectures directly
where this is possible. We present five comparable results
from published literature in Table 3. Based on the differing
workload sizes presented in these papers, we adjust the
hardware configuration for Sunway TaihuLight, changing
the number of nodes utilized. This is determined by the size
of the task in terms of k and d where no further performance
gains are possible by adding more nodes. The number of
nodes varies from just one node for a single processing unit
[26], [29] to 128 nodes in [35]. We report results against
a heterogeneous node based approach running a custom
implementation of parallel k-means on ten heterogeneous
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Fig. 7. Comparison tests: (1) varying d with 2,000 centroids and 1,265,723 data samples tested on 128 nodes; (2) varying k with 4,096 dimensions
and 1,265,723 data samples tested on 128 nodes; (3) varying number of nodes used with a fixed 4,096 dimension, 2,000 centroids and 1,265,723
data samples.

TABLE 3
Execution time comparison with other architectures

Approaches Hardware Resources n k d Execution time
per iteration
(sec.)

Execution time per iter-
ation by Sunway Taihu-
Light (sec.)

Max.
Speedup

Rossbach, et al [35] 10x NVIDIA Tesla K20M
+ 20x Intel Xeon E5-2620

1.0E9 120 40 49.4 0.468635 (128 nodes) 105x

Bhimani, et al [4] NVIDIA Tesla K20M 1.4E6 240 5 1.77 0.025336 (4 nodes) 70x
Jin, et al [26] NVIDIA Tesla K20c 1.4E5 500 90 5.407 0.110191 (1 node) 49x
Li, et al [29] Xilinx ZC706 2.1E6 4 4 0.0085 0.002839 (1 node) 3x
Ding, et al [15] Intel i7-3770K 2.5E6 10,000 68 75.976 2.424517 (16 nodes) 31x

nodes, each node consisting of an NVIDIA Tesla K20M GPU
with two Intel Xeon E5-2620 CPUs [35]. Further, we compare
against two GPU based implementations running on an
NVIDIA Tesla K20M GPU and an NVIDIA Tesla K20C GPU
respectively [4], [26], an FPGA based approach running a
custom parallel k-means implementation on Xilinx ZC706
FPGA [29], and a multi-core processor based approach
running a custom implementation of parallel k-means on
8-core Intel i7-3770k processor [15].

The proposed approach running on the Sunway Taihu-
Light supercomputer achieves more than 100x speedup over
the high-performance heterogeneous nodes based approach,
between 50x-70x speedup than those single GPU based
approaches, and 31x speedup over multi-core CPU based
approach on their largest solvable workload sizes.

5.3 Auto-clustering on Real Application
Genomic information from gene expression data has been
widely used and already benefited on improving clinical
decision and molecular profiling based patient stratifica-
tion. Clustering methods, as well as their corresponding
HPC-based solutions [40], are adopted to classify the high-
dimensional gene expression sequences into some known
patterns, which indicates that the number of targeted clus-
tering centroids are determined in advance. As we all know,
there are still large numbers of gene expression sequences,
among which the patterns are not yet discovered. Therefore,
the proposed auto-clustering method can potentially help
find new patterns from high-dimensional gene expression
datasets.

In our work, we test the auto-clustering process on
the ONCOLOGY&LEukemia gene expression datasets [16].
There are 4254 subjects and each subject has 54675 probesets.

In this problem definition, we cluster the whole dataset
using our level-3 partitioning method, where n is 4254,
and d is 54675. In this task, we generate the candidate k
by enumerating from 2 to 2000 (up-to around n/2). The
performance for one iteration execution time is shown in fig-
ure 8(1) and the total execution time is shown in figure 8(2).
The results demonstrate good performance of our approach
with a linear scale on one iteration time and also shows
that our supercomputer-based technique can compute such
a large-scale dataset for all needed iterations within 200
seconds at most.

We further apply the evaluation function to determine
the optimal value of k. The results are shown in figure 8(3).
We can see that r′(k) reaches the first increasing when
k = 14. After that, r′(k) fluctuates around a certain value,
which indicates that continually increasing the k values
cannot further represent more patterns in the input data.

6 CONCLUSION

In this paper, we present an automatic k-means clustering
solution based on the Sunway TaihuLight supercomputer.

We first propose a fully data partitioned (nkd-partition)
approach for parallel k-means implementation to achieve
scalability and high performance at large numbers of cen-
troids and high data dimensionality simultaneously. Run-
ning on the Sunway TaihuLight supercomputer, it breaks
previous limitations for high performance parallel k-means.

Furthermore, we propose an automatic hyper-parameter
determination process, by automatically generating and ex-
ecuting the clustering tasks with a number of candidate
hyper-parameters, and then determining the optimal hyper-
parameter according to an evaluation method.
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Fig. 8. (1) One iteration execution time and (2) total execution time for gene expression dataset ONCOLOGY and LEukemia; (3) The evaluation
function r′(k) to determine the optimal k value.

The proposed auto-clustering solution is a significant
attempt to support AutoML on a supercomputer system, and
provide a feasibles way to support other potential machine
learning algorithms.
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