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ABSTRACT

As a vital approach to determine the structure of biomacromolecules,
high-resolution cryo-electron microscopy (cryo-EM) 3D reconstruc-
tion is extremely compute-intensive, and has gradually migrated
to GPU accelerators in recent years. With certain kernels already
achieving high speedup and efficiency on GPUs, the reconstruction
part, which inherently requires accesses of a large 3D model in
different orientations, brings tough challenges to GPU architec-
tures and has no effective GPU-based options. To fill the above gap,
in this paper, we propose Stream3D, a novel GPU-based parallel
design for cryo-EM 3D reconstruction. Our major idea is to reor-
ganize the related problem space as streams of key-value pairs, so
that we can achieve both the flexibility and efficiency to compute
and accumulate the contribution to the final 3D model from all
different 2D image inputs. In addition, we design a hybrid com-
munication mechanism to reduce intra-node communications and
enable the solving process on a larger scale. With the addition of
our GPU-based reconstruction design, we are able to improve the
performance of the reconstruction part itself by 9.50 times, and
the performance of the entire processing part (the reconstruction
part and the other parts with mature GPU options) by 2.83 times.
Moreover, Stream3D enables using the approach at a large scale,
with 65.32-fold speedup when using up to 80 GPUs.
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1 INTRODUCTION

Cryo-electronmicroscopy (cryo-EM) techniques, whichwere award-
ed the 2017Nobel Prize in chemistry, have been regarded as themost
promising techniques to acquire the structure of biomacromolecules
from cryo-EM images at near-atomic resolutions [5, 12, 16, 17]. At
the core of these techniques lies the three-dimensional reconstruc-
tion (3D reconstruction), which plays a central role in complet-
ing the final 3D determination. However, the prominent successes
achieved in recent years [2, 32] are largely driven by the complex
algorithm and huge image dataset (∼105 images), which in return
bring great computational challenges. It usually takes tens to hun-
dreds of hours to produce a medium size model on a lab cluster with
thousands of CPU cores [6, 35]. The computational requirements
are currently becoming the main constraints for the application
of more complex methods, such as the statistic-based Bayesian
approaches [24], and high-resolution large structure determina-
tion [25].

Heterogeneous many-core systems, such as GPU clusters that
feature tremendous computing power and favorable cost effective-
ness, have become an attractive choice to address the increasing
computational demand in cryo-EM field. Prior research [15, 26, 37]
have put enduring efforts on GPU-accelerated cryo-EM structure
determination and have shown promising speedups. Theymostly fo-
cused on the image correlation, contrast, alignment and etc., which
are largely dominated by element-wise operations. In contrast, the
3D reconstruction part, which inherently requires accesses of a
large 3D model in different orientations, bring significantly tougher
challenges for the GPU architectures, and still lack effective GPU-
based solutions. As a result, with the other parts accelerated by
GPUs, the 3D reconstruction part is occupying larger and larger
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Figure 1: The 3D reconstruction in cryo-EM and its computational challenges. A. The 3D reconstruction workflow and its

straightforward data parallel design which is normally bounded by the GPU memory capacity constraints and suffers from

high communication overhead when dealing with large models. B. The demand to process a number of different image ori-

entations imposes a great challenge for effective partition of the problem space. C. The discontinuous memory access when

inserting a pixel into volume. The value of a pixel in image contributes to voxels in a cubic neighborhood area in volume. D.
Data conflicts when simultaneously inserting two pixels which are close enough to each other.

portions (more than 70% according to profiling results of [9]) of the
total run time.

The challenge of the 3D reconstruction part mainly comes from
two factors. The first one is the requirement to access different
2D images with different orientations in the 3D model volume, as
shown in Figure 1. In such a processing pattern, the traditional
spatial partition or blocking strategies are ineffective. A straightfor-
ward approach is to store the entire 3D model in each single node or
device, which leads to expensive memory and communication cost.
The second factor is the discontinuous memory accesses. Again,
when mapping the contribution of the final 3D result from numer-
ous 2D images with different orientations, i.e., computing voxels
from pixels, we face complicated and largely distributed memory
access patterns.

As a result, we see few efforts that try to achieve an efficient
design of the 3D reconstruction part. Among the most widely used
software packages in cryo-EM labs such as Relion-2 [11], the code is
still at the stage of accomplishing functions, rather than considering
efficiency. While they already provide GPU accelerations for most
of the modules, the reconstruction part is still pure-CPU code.

Aiming at a comprehensive solution, we intend to tackle the chal-
lenging problem from an element-centric view, which concentrates
on the working partitions of the model, instead of the model-centric
view which holds the entire model on device. We further extend
this basic idea based on two key observations. First, each image
only updates a 2D plane of the 3D model at a specific angle, which
means only a subset of the referenced voxels is required. Second,
by treating the voxel subset as the main problem space, the irregu-
larity and contention could be better regularized and controlled by
designing a dedicated memory layout. These features inspire us to
reorganize the model as a large set of voxels, and design a novel
parallel method with a partitioned model.

In this paper, we propose Stream3D, a novel parallelizing design
with a partitioned and streamed model abstraction for cryo-EM 3D
reconstruction. Our major idea is to reorganize the related prob-
lem space as streams of key-value pairs, so that we can achieve
both the flexibility and efficiency to compute and accumulate the
contribution to the final 3D model from all different 2D image in-
puts. By reshaping and compressing the voxel streams, it further

improves the memory access efficiency and greatly reduces the
memory consumption. In addition, we design a hybrid communica-
tion mechanism to reduce intra-node communications and enable
the solving process on a larger scale.

Experiments show that, with the addition of our GPU-based
reconstruction design, we are able to improve the performance of
the reconstruction part itself by 9.50 times, and the performance of
the entire processing part (the reconstruction part and the other
parts withmature GPU options) by 2.83 times. Moreover, Stream3D
enables using the approach at a large scale, with 65.32-fold speedup
when using up to 80 GPUs.

2 BACKGROUND AND MOTIVATION

2.1 3D Reconstruction Algorithm in cryo-EM

Cryo-EM images are projections of an macromolecule, e.g. pro-
tein, from different project directions. The relationship between
an object and its projection is referred to as central slice theo-

rem [18, 23]: the Fourier transformation of the projection of a 3D
object is the central 2D plane cross-section (i.e., passing though
the origin of Fourier space as illustrated in Figure 1-A/B) of the ob-
ject’s 3D transform and is perpendicular to the projection direction.
A Fourier transformation on these images generates a number of
cross-section slices. Therefore, when the number of slices is enough
to retrieve information in 3D Fourier space, an inverse Fourier trans-
formation can be applied to recover the original 3D model. Most
computations occur at the steps of merging the slices, i.e. the trans-
formed images, into 3D Fourier space by rotation, translation and
interpolation.

The above idea forms the basics of direct Fourier inversion, a
transform algorithm currently considered the most accurate re-
construction method [19]. The direct Fourier inversion method
directly and exclusively operates in Fourier space by casting the
problem as one of Fourier space interpolation between polar system
of coordinates of the projection and Cartesian system of coordi-
nates of the object [1, 27]. The algorithm comprises four steps:
(1) Use reverse gridding method to resample 2D input projection
images into 2D polar coordinates. (2) Calculate the convolution for
the Fourier transform of each projection by

∑
i F [w] ∗ (cF [дi ]),
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Algorithm 1 The General Reconstruction Procedure

Input: Image set I = {imaдei }, rotation matrix R = {ri }
Output: Model volume F , weight volume C
1: F ← 0, C ← 0
2: for imaдei ∈ I do

3: for pixelj ∈ imaдei do
4: voxel = CoordinateTrans f orm(pixelj , ri )
5: weiдht[ ] = Interpolation(voxel )
6: for voxelk ∈ neiдhbor (voxel ) do
7: F [voxelk .index] += voxel ×weiдht[k]
8: C[voxelk .index] += weiдht[k]
9: end for

10: end for

11: end for

where c are gridding weights and F [w] is an appropriately chosen
convolution kernel, д is 2D projections. (3) Use 3D inverse FFT
to compute wd = F −1[F [w] ∗ F [d]] on a Cartesian grid. (4) Re-
move the weights using real-space division d = (wd )/w . The major
computational complication lies at step 2 which is essentially a con-
volution. In practice, a modified trilinear interpolation scheme is
always used as simplified replacement of the convolution. To high-
light the reconstruct logic, we show the actual calculation kernel
briefly in Algorithm 1, with element-wise operation and (inverse)
FFT omitted.

2.2 Challenges of 3D Reconstruction on GPUs

Huge models. Potentially, the most critical impediment to apply
GPU in 3D reconstruction is the limited on-device memory. Table 1
shows common model configurations with memory consumption
ranging from 0.52 GB to 71.99 GB. Prior practices [7], implied in
Algorithm 1 Line 7-8, which hold the entire model on GPU are not
applicable when dealing with the medium and large cases 1.

Table 1: Common Model Configuration.

Model Size 360 680 1000 1220 1540 1860
Memory 0.52 3.52 11.20 20.33 40.87 71.99Consume(GB)

The 3Dmodel size is represented by the number of voxels (n.o.v) of one dimension
(the other two dimensions have the same n.o.v.), we use this as a convention in
following. Model is measured in double precision.

However, finding an effective model partition method is nontriv-
ial. Because the orientation parameters of images are undetermined
and updated during every iteration, each single image can be po-
tentially interacted with any parts of the volume. Traditional 2D
or 3D partition schemes may split the volume into several regu-
lar parts, and then distribute the different parts among different
processes. However, the nondeterministic orientations of images
could potentially require each process to reference all the other
images. The communication overhead will increase linearly with
the number of computing nodes, while the image data utilization
will decrease linearly, leading to a non-scalable design. Besides,

1Current GPUs usually own 6 GB to 16 GB on board memory.

the centralized distribution of voxels in volume also presents a
challenge for this design to achieve load balance. In fact, the huge
memory consumptions of large models influence the parallelization
design. Data-parallel, in which each GPU preserves a model replica
and communicates the entire model every iteration, suffers from
huge communication overhead.

Discontinuous and irregular memory accesses. The mem-
ory access behavior of merging images into volume exhibits severe
discontinuity. In the interpolation procedure, the value of one image
pixel needs to be added to tens of voxels in a cubic area of model,
which are not continuous in a normal memory layout. Under the
current parallelization policy [9], each GPU thread is responsible for
the computation of one (or several) pixel interpolation. As shown
in Figure 1, these threads as a whole update a 2D plane of the 3D
model at a nondeterministic angle, which makes it impossible to
identify a suitable thread mapping that achieve coalesced memory
access. A common practice is to assign continuous thread with the
task of inserting continuous pixels to coalesce the pixel read access.
However, considering that the image can be inserted by an arbitrary
orientation, the coalescing of voxel access will be significantly re-
duced. At the same time, the 2D plane is only accessed once during
insertion of one image, so that caching it in shared memory can
hardly benefit.

Low computational efficiency is another potential problem
resulted from the excessive data contention inherited in merging
images into volume. Multiple GPU threads might update the same
model voxel during the interpolation. This is a common scenario
when adjacent pixels are projected to voxels near the model cen-
ter. Atomic operations are introduced to guarantee the correct-
ness, while their overhead is non-negligible. Although a proposed
method [35] alleviates such contentions by increasing the distance
of pixels that are concurrently inserted into the volume, it actually
reduces the parallelism and has negative effects on performance.

2.3 Motivation

To solve the problem, we first review the 3D reconstruction pro-
cess. Two key observations throw lights on our design. First, when
merging an image into the volume, only a subset of the voxels near
the corresponding slice plane will be updated. Thus there is no need
to store the whole model on the device if we insert a certain batch
of images each time. Second, without storing the whole model,
the irregular memory access to update the voxels in a cube of vol-
ume can be eliminated. Because no-whole-model design provides us
with a flexibility to reshape the memory layout for storing the gen-
erated voxels in a regular and continuous way. Inspired by these
observations, we rethink the reconstruction calculation from an
element-centric view, in which pixels and voxels are treated as first
class objects to organize the computation.

3 STREAM3D: REORGANIZING THE

PROBLEM AS KEY-VALUE STREAMS

3.1 Key-Value Expression for Reconstruction

The first design process that we perform is to identify an effective
model representation that can help both the expression of the al-
gorithm and the efficiency of the computation. In our proposed
key-value abstraction, a key represents the coordinate index of a
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Algorithm 2 Identical Thread-mapping

Input: Image set I = {imaдei }, rotation matrix R = {ri }
Output: voxel_stream = [kvparisi ]
1: F ← 0, C ← 0
2: for imaдei ∈ I do ▷ parallelized
3: for pixelj ∈ imaдei do ▷ parallelized
4: voxel = CoordinateTrans f orm(pixelj , ri )
5: weiдht[ ] = Interpolation(voxel )
6: for voxelk ∈ neiдhbor (voxel ) do
7: kv =make_pair (∆voxelk ,weiдht[k])
8: voxel_stream.write (kv )
9: end for

10: end for

11: end for

Algorithm 3 Adaptive Thread-mapping

Input: Image set I = {imaдei }, rotation matrix R = {ri }
Output: voxel_stream = [kvparisi ]
1: F ← 0, C ← 0
2: de f ine < k,v >=< index ,voxel {values,weiдht } >
3: shared memory : s_vxl[ ], s_wet[ ]
4: for imaдei ∈ I do ▷ parallelized
5: for pixelj ∈ imaдei do ▷ parallelized
6: s_vxl[i, j] = CoordinateTrans f orm(pixelj , ri )
7: s_wet[i, j] = Interpolation(s_vxl[i, j])
8: end for

9: for k ∈ neiдhbor ({< [i, j], _ >}) do ▷ parallelized
10: kv =make_pair (∆s_vxl[i, j], s_wet[i, j],k )
11: voxel_stream.write (kv )
12: end for

13: end for

voxel, and the value is a structure storing the voxel’s numeric infor-
mation, including a complex value in Fourier Space and a weight
value. Treating the model voxels as streams of key-value pairs, the
reconstruction process can be expressed as accumulating the val-
ues with identical keys into the model. By storing the voxels in
key-value pairs, we can express the reconstruction calculation in
a more memory-efficient style, as illustrated in Algorithm 2 Line
7-8. Compared with Algorithm 1, first, there is no need to reference
the whole model; and second, the memory access behaviors can be
reorganized by reordering the voxels.

In fact, the key-value pair representation is a kind of decon-
struction to the original structured model representation in that
the calculations are reformed to generate voxel streams without
referencing the whole model. Besides, two attractive properties of
key-value representation, associativity and commutativity, make it
naturally straightforward to express parallelism.

3.2 Leverage the Key-Value Abstraction for

GPU Computing

We present Stream3D’s design of mapping the exposed parallelism
to GPU architecture, leveraging key-value expression.

Eliminate the un-coalesced memory access. The key-value repre-
sentation provides us with an extra opportunity to redesign the

global memory layout and regularize the access pattern. Stream3D
exploits this flexibility by an adaptive thread mapping in a two-
phase design as illustrated in Algorithm 3 Line 5–12. The first phase
is a pixel centric calculation during which a pixel is normalized,
transformed to 3D volume space and evaluated by interpolation.
All of these computations are performed independently on each
pixel. So it’s an element-wise operation and free to be mapped in a
low-level scheme that each single thread processes a single pixel.
In the second phase, our focus changes to voxel centric calculation.
The task of this phase is to complete the interpolation, i.e. for each
voxel we calculate all the contributions of the pixel and save in key
value pairs. This update operation is again a voxel independent
calculation and is assigned to a single thread. Both pixel-thread
mapping and voxel-thread mapping ensure the coalesced memory
access in a way that adjacent threads read adjacent pixels in the
first phase and write to adjacent voxels in the second phase.

Leverage shared memory that being hardly to benefit from in prior
design. According to our two-phase design, the intermediate results
are well suited to be stored in shared memory. By design, the two-
phase arrangement does require a stage memory for phase transfer
as two different thread mapping schemes are used respectively. The
fast on-chip shared memory serves this purpose directly. Another
attractive feature is that shared memory is much less sensitive to
un-coalesced memory access, so the impact of less regular writing
operations to store intermediate results in the first phase is reduced.
Moreover, the use of shared memory greatly reduces the number
of registers consumed by the streaming kernel and thus increases
the SM occupancy, which is beneficial to achieving high computing
throughput.

Conflict-free by ordered key. One major challenge for 3D recon-
struction is the voxel area’s overlapping nature, which inevitably
leads to write conflict. In Stream3D, this problem is effectively
solved by the sort-by-key operation, which is originally designed
for implementing reduce-by-key. The attribute that the voxel stream
offloaded from the device is sorted by the coordinate index makes
the final model update operation on host conflict-free.

4 PARTITION AND REDUCTION STRATEGIES

Different from the model-centric view which holds the entire model
on device, Stream3D employs an element-centric view which con-
centrates on the working voxels of the model, thereby is more
efficient for both computation and memory, as illustrated in Fig-
ure 2. Leveraging the key-value abstraction, Stream3D successfully
breaks up thememory bottleneck and de-structures themodel into a
large set of voxels. However, this is achieved at the cost of migrating
memory access from on-chip interconnection, i.e. memory bus, to
off-chip interconnection, i.e. PCIe. Considering the bandwidth and
latency gap, a straightforward stream offloading implementation
will degrade the performance seriously.

To avoid this degradation, Stream3D exploits an important fea-
ture derived from the central slice theorem, as referred in section 2.1,
that all images are central cross-sections of the object’s 3D trans-
form which pass through the origin. It means for every two images,
and their corresponding generated voxel sets, there is an overlap-
ping area. Therefore, this implies a huge reduction space which can
be leveraged to minimize the overhead of voxel stream offloading.
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Figure 2: Comparison of Stream3D’s element-centric com-

putation view with model-centric view. The yellow and blue
pixels generate the corresponding voxels in the same color,

and the red ones indicate the reduction opportunity.

Stream3D is designed with a partition scheme on the voxel set
to facilitate reduction. The total set of voxels is divided into sev-
eral subsets according to the images which they are generated
from. Each voxel subset, represented in key-value pairs and linearly
ordered, forms an 1D-partition (one dimensional partition), as
illustrated in Figure 2. Since they are from the same image, vox-
els in the same partition share the same weight and orientation
parameters during insertion. Every two 1D-partitions have an over-
lapping area near the center of the model; and a global reduction
on all the 1D-partitions produces the complete 3D volume. This
partition scheme enables the batching and reduction mechanism of
Stream3D, which are critical for maximizing fine-grained paral-
lelism, reducing transfer overhead and sustaining a high computing
throughput.

4.1 Batching

Two phases of reconstruction process employ batching strategy in
Stream3D. One is batching the images to be uploaded to devices,
and another is to perform the reduction operation on batched 1D-
partitions. A major consideration on batching uploaded images is
to expose maximal parallelism at pixel level while better accord
with GPU architecture’s mechanism of hiding latency. The batch
size, i.e. the number of images in a batch, has a direct relation to
the configuration of CUDA thread blocks when launching kernel,
and further has a severe impact on the occupancy of the Streaming
Multiprocessors (SMs). A relative high occupancy is critical to SM’s
execution efficiency since there are more warps to switch to hide
latency when one warp is paused or stalled on an SM. The batching
1D voxel partitions is mainly designed to amortize the data transfer
overhead and more importantly, provides a granularity control for
reduction, which is presented below.

4.2 Multi-Reduction

The overlapping feature of 1D voxel partitions provides us with a
huge space for compression. In view of this, Stream3D is designed

with a reduction phase to reduce the redundant data transfer by
aggregating all the generated voxels in all potential 1D-partitions.

The reduction phase is performed after the streaming stage by
means of sort-based reduce-by-key operation, and is organized by
a three-level design:
• The first level is inside a 1D-partition to reduce the overlap-
ping voxel areas generated by adjacent pixels.
• The second level is in a batch which makes use of the inter-
section of different 1D-partitions in a batch, a feature derived
from the central slice theorem.
• The third level is an across-batch reduction which further
aggregates the redundant voxels from different batches.

Each level concentrates on a distinct aspect of the reduction space.
And a thorough three-level reduction on the whole 1D-partition
set will produce the complete model.

The reduction operation in fact trades computations for mem-
ory transfer which offloads more computations on GPU. This will
make influences both on CPU-GPU cooperation and computation-
transfer overlapping on devices. Therefore, to achieve seamless
overlapping and cooperation, an adaptive reduction strategy is
used in Stream3D by dynamically rebalancing the reduction ratio
with the CUDA stream overlapping outcome. During the reduc-
tion phase, the Stream3D will control the level of reduction to be
performed by tracing the reduction ratio of each batch. Besides,
Stream3D also stages the reduced 1D-partition batches on device
whenever the global memory is available. Based on the statistics
of processed batches, it estimates the up coming batch’s reduction
ratio and then makes a decision on whether offloading the staged
ones or performing another reduction. Experiments show that more
than 70% of voxels, with modest model size and batch size, can be
reduced, thereby the memory copy overhead from device to host is
greatly decreased.

4.3 Discussion on Reduction Ratio

Theoretically, the larger the batch is, the more the the reduced
voxels are. We explain this by a simple quantitative analysis. Let p
denote the total number of the original voxels before reduction in
a batch, q to be the number of the remaining voxels after reduction.
Then we define the reduction ratio as η = 1 − q

p . Now we increase
the batch size to be 2 times of the original and do a reduction
on this new batch. The reduction ratio becomes η

′

= 1 − q⊕q
p+p ,

where ⊕ represents a reduction sum. Since all the voxels reside
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on a slice plane which through the centre of the model, there are
always redundant voxels generated by two images with arbitrary
orientation. Thus, q ⊕ q < q + q = 2q, which leads to

η
′

= 1 −
q ⊕ q

p + p
> 1 −

2q
2p
= 1 −

q

p
= η

. This demonstrates that the large batch size contributes to high
reduction ratio in general, when orientations of images follow a
uniform distribution.

However, the large batch has impact on CPU, since it’s more
sensitive to the increment of the task than GPU. So large batch has
potential negative effect on dragging the whole process. Moreover,
large batch also consumes more memory. Therefore, finding the
best batch size for different models is a trade-off, as illustrated in
Figure 3.

5 STREAM SCHEDULING

The streaming model abstraction has transformed the 3D recon-
struction process into a pipelined process which comprises of four
stages, streaming, sorting, reduction and accumulation, as illustrated
in Figure 2. Based on this decomposition, Stream3D employs a
top-down approach to design a three level (high-level, mid-level
and low-level) scheduling controls, shown in Figure 4. Each level
concentrates a distinct concurrency aspect of CPU-GPU system.

5.1 Coordination between CPU and GPU

The high-level control strategy focuses on stage distribution and
cooperation between CPU and GPU. Based on the computational
features and resource requirements, the four stages are distributed
on different architectures. The streaming, sorting and reduction,
which feature computation-intensive calculation and possess a high
degree of data parallelism, are assigned to GPUs. On the other hand,
the memory-intensive accumulation stage, which is limited by the
entire model storage requirement, is assigned to CPU.

The scheduling of the coordination between host and device
revolves around a basic objective - to reduce the idle time of device
and sustain a high and stable compute throughput. The mechanism
is facilitated by the following components:
• Dedicated Thread Two kinds of worker threads, updater
and accumulator, run in background serving for the image
batch buffer update and model accumulate request.
• Blocking Task Queue Update and accumulate task de-
scriptor are encapsulated into task objects, which are sched-
uled through a blocking First-In-First-Out (FIFO) queue,
achieving coordination between host threads and device
CUDA streams.
• Buffer Pool A buffer memory maintained on host to cope
with occasional request burst.

The dedicated threads combined with the blocking queue com-
pose the asynchronous task scheduling mechanism, where the
requests from devices are guaranteed to be scheduled immediately
so as to not delay any following operations on devices. To ensure
the completion of the requested task, an explicit synchronization is
available to be invoked. By identifying and leveraging the opportu-
nity for provoking the appending task in advance, immediately after
the data dependency is dismissed, our scheduling design exploits
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sufficient parallelism both of the pipeline and the heterogeneous
architecture. To handle any request bursts which may result from
the dynamic nature of the reduction stage, a page-locked mem-
ory buffer pool is deployed. This contributes to a stable sustained
compute throughput.

5.2 Scheduling Multi-Streams on GPU

The concentration of the mid-level control is how to efficiently
schedule multi-CUDA-streams on devices. Two strategies for multi-
stream design are examined. One is employing identical style, each
stream is enqueued with the identical operations but with different
parts of the input data; while an alternative is to enqueue each
stream with different operations and completes the whole calcu-
lation in all together, leading to a cooperative style multi-stream
design.

The two are both capable of implementing multi-stream concur-
rency, but have different impact on the reduction ratio which is
critical to the efficiency of data transferring. Based on the batched
processing method, the identical style which holds several identical
buffers actually exacerbates the fragmentation of the calculation,
being contradictory to the batched idea. In view of this, the coop-
erative style outperforms the identical style, because it is capable
of compressing the full batch data while the latter can only do
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compression on a subset. The sub-batch compression not only di-
rectly decreases the absolute reduction amount but also decays the
reduction ratio, as shown in Section 4.3.

5.3 Intra-Stream Scheduling

The low-level control is proposed to schedule operations in single
stream, wheremajor challenge presented here is the dynamic nature
inherited from the reduction operation. To achieve the computation-
communication overlapping, the reduction and data copy opera-
tions should be invoked asynchronously. But the non-deterministic
length of the voxel stream remaining after reduction controls the
up next offloading operation, which means a synchronization is
required before calling the memory copy operation to get the actual
data size after reduction in runtime. This kind of synchronization
has a negative impact on maximizing the concurrency as it delays
the execution of the following operations, which further impedes
the operations overlapping.

We adopt a pre-issue scheduling strategy by carefully arranging
the order of the operations in a stream to achieve the minimum
delay on stream’s asynchronous execution. The basic idea is to
issue the operations on the next batch as early as possible. Con-
sidering that the reduction occupies the computation unit of GPU,
we pre-issue the next batch’s memory copy operations to increase
overlapping.

5.4 Hybrid Communication Design

Stream3D presents a hybrid communication design. Each GPU
within a node communicates by reading/writing model partitions
from/to host memory, which contributes to intra-node model par-
allelism. Each node communicates the entire 3D model after each
iteration, which contributes to inter-node data parallelism. Such a
hybrid design comes from the trend that large models are usually
reconstructed with big data. That is, each node is responsible for
processing a large number of images during the 3D reconstruction.
With regard to intra-node parallelism, a batch of images only update
a small portion of the whole model, so partitioned model updates
can greatly reduce the intra-node communication. However, for
the inter-node case, the number of images on each node is large to
update the whole model. A model parallel design can not reduce
the amount of communication, but increase the frequency of com-
munication. Therefore, when scaling to multi-nodes, we choose
data parallel strategy that each node acts as a model server. The
input images are evenly distributed among the nodes, and model is
updated at each iteration through allreduced operation. The com-
munication pattern of both intra-node and inter-node has been
taken into consideration in such a hybrid design.

6 IMPLEMENTATION TECHNIQUES

6.1 Scheduling Mechanism

The scheduling of CPU-GPU cooperative parallel scheme is imple-
mented through blocking task queues and CUDA stream callback
mechanism. The blocking queue on host provides two operations:
the push for enqueuing a task into the FIFO list and the pop for de-
queuing a task from the FIFO list. The two operations are blocking
in that if a pop operation is invoked on an empty queue, it will be
blocked until a new task is pushed into the queue.

The push and the pop operations are then encapsulated into
notify operation and synchronize operation respectively, which
are invoked by CUDA stream callback functions. The notify opera-
tion is designed to be properly inserted into CUDA stream to ensure
the task to be scheduled immediately after the data dependency is
dismissed at runtime. And the synchronize operation is inserted
into stream just before the data buffers are reused to guarantee that
the last operation on this buffer is completed.

The worker threads on host undertake the actual tasks, such
as updating the host buffer and accumulating the voxel stream to
the final model, by scanning the appending queue in background.
Whenever there is a new task in the queue, the worker will take this
job out of it and add to the accomplished queue after completion.

6.2 Optimization Techniques

Reduce-by-key. The internal reduction process is a sort based
reduce-by-key implementation. To make the calculations more
memory friendly and efficient, the key-value pairs data stream
is organized as structure of arrays with keys and values stored
continuously. The actual reductions perform in two stages. The first
is key reduction stage after which the boundary information will
be stored. Then goes to the value reduction stage, where each part
of the array structure is reduced based on the boundary info. We
leverage the well optimized implementations of sort and segment-
reduce kernel in THRUST [8] and MGPU [3] libraries.

Cached memory allocator. The memory allocation and deal-
location on GPUs are very expensive operations, so an effective
device memory management is required to obtain the optimum
overall performance. In our implementation, a cached memory al-
locator is implemented to minimize the impact of allocations by
reusing and sub-allocating GPU global memory.

NUMA-aware data placement. In order to improve the band-
width of the memory intensive accumulation operations on CPU,
NUMA-aware data placement, as well as vectorization optimiza-
tions, are leveraged.

7 EXPERIMENTS

In this section, we evaluate Stream3D on multiple datasets and
get the following findings: 1) Stream3D outperforms baseline GPU
implementation through key-value based streaming transforma-
tion. 2) Stream3D makes it possible to run large models on GPUs
and the efficiency is guaranteed. 3) Stream3D enables a hybrid
communication, which achieves 65.32-fold speedup on 20 nodes
(80 GPUs).

7.1 Platform and Test Cases

System setup: Experiments are performed on two GPU platforms
- System A and Cluster B. System A is a two node cluster, each of its
node is equipped with two 14 cores (28 threads) Intel Xeon E5-2690
v4 CPUs and 4 Nvidia Tesla P100 GPUs. The memory of a node is
configured with a 256GB DRAM and each P100 GPU has a 16GB on
device memory. Cluster B has 20 CPU-GPU heterogeneous nodes.
Each node comprises two 12 cores (24 threads) Intel Xeon E5-2643
v4 CPUs with 256GB DRAM and 4 Nvidia Tesla K40m GPUs, each
of them has a device memory of 12GB.
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Table 2: Single GPU Results with Different Model Size

Model Batch Reduc. Entire Stream Rlt. Speedup
Size Size Ratio Mem. Mem. GPU CPU
200 320 88.52% 0.09 1.06 2.36 12.66
360 320 85.31% 0.52 3.40 2.26 11.74
520 300 82.78% 1.58 6.62 2.12 12.31
680 260 79.35% 3.52 9.80 1.91 11.41
840 196 72.72% 6.64 11.25 1.69 12.13
1000 156 66.01% 11.20 12.69 1.71 10.98
1060 112 56.22% 13.34 11.18 − 9.29
1220 96 50.25% 20.33 12.68 − 7.02
1380 38 47.51% 29.40 6.42 − 6.25
1540 48 44.21% 40.87 10.10 − 6.93
1700 32 49.31% 54.97 8.20 − 6.33
1860 32 49.25% 71.99 9.82 − 6.96

“GPU” represent the baseline implementation; “-” means model size exhausted
device memory or are not supported; memory is measured in GB.

Test cases: The dataset used in our evaluation comprises 12 gen-
erated cases and 1 real-world case, see in section 7.5. The largest
model size is set to 1860 pixel as the upper bound of the images that
current electronic microscope can obtain is around 2000 pixel. Both
the CPU baseline and GPU baseline are adapted from [9], the only
one published software with full-fledged CPU/GPU 3D reconstruc-
tion implementation to the best of our knowledge. The evaluation
of single GPU performance and intra-node scalability are conducted
on System A. The inter-node scalability are evaluated on Cluster B.
The baseline performances of the CPU-only implementations for
single node and multi-nodes are tested on Cluster B.

7.2 Performance Results on Single GPU

Table 2 reports the single GPU performance of Stream3D. The re-
sults show that Stream3D outperforms the CPU implementation by
an average relative speedup of 11.87, 7.13 and 9.50 on model-fitted
cases, out-of-memory cases and total cases, respectively. For model-
fitted cases, Stream3D also achieves 1.69 to 2.36 times speedup
than the straightforward GPU implementation. Note that with the
increment of the model size, there is a slight performance decay
on Stream3D. This is due to the reduced batch size to fit the large
model and decreased reduction ratio. Moreover, the large model
will need a wider datatype to store the index, this also contributes
to the performance loss observed between model size of 1000 and
1060. On the other hand, Stream3D greatly reduces the memory
consumption. Specifically, it saves up to 7.33x device memory for
the biggest model in our test case. While it still 6.96x faster than
the CPU implementation.

We evaluate the computational efficiency of Stream3D by pro-
filing the kernel performance and compare with the GPU baseline,
as shown in Table-3. The results show that Stream3D achieves
much higher global bandwidth at 178.04 GB/s, up to 15 times of the
baseline. Benefiting from shared memory, the local memory access
overhead is greatly reduced as more local variables can be accessed
at a fast speed. This is further revealed in high warp execution effi-
ciency, which represents the average percentage of active threads

Table 3: Kernel Performance Comparison

Mem. Shared mem. Global mem. Local mem.
usage (KB) bandwidth overhead

mdl-fit 0 / 48 11.77 GB/s 59.20%
stream 38.81 / 48 178.04 GB/s 10.50%

Comp. Instruction Achieved active Warp exe.
divergence warp occupancy efficiency

mdl-fit 48.19% 24.9% 53.0%
stream 33.10% 75% 96.8%
The metrics are collected by nvprof through 560/1000/1540 test cases on
K40m with number averaged. “mdl-fit” refers to baseline implementation.

in each executed warp. Because the reduced memory access latency,
the overall calculation throughput increases.

7.3 Benefit of Scheduling Strategies

We measure the individual benefit of pre-issue and multi-reduction
for cooperative multi-stream implementation, and compare with
the identical multi-stream one. To achieve this, we disable each
technique and measure the impact on the overlapped percentage
of the total time. Figure 5-A gives the results. We observe that for
small-sized and medium-sized model, multi-reduction brings more
significant improvement than pre-issue, while the large model ben-
efits more from pre-issue than multi-reduction. This is because the
large model adopts small batch size, which leaves less space to be
reduced by reduction. But for the larger batch size used by small and
mediummodels, it will impose more pressure for CPU and have neg-
ative impact on the overlapping, if not leveragemulti-reduction. The
results further confirm that cooperative multi-stream design out-
performs the identical one. The effectiveness of buffer pool design is
evaluated by measuring the longest waiting time on synchronize
call. This metric reflects the stall time on CPU side in the pipeline.
Figure 5-B gives the results normalized by one buffer configuration
in each case. It shows that using three buffers, the longest waiting
time can be reduced lower than 3% of computation time for all the
three cases.

70
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Figure 5: Benefit of scheduling optimizations in Stream3D.

A. Stream scheduling strategies comparison on one device.

(MR: multi-reduction) B. Effects of buffer pool size, using 4

devices. All tests are performed on System A.
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comparison between Stream3D and swap-model implementation which can only handle small and medium-sized models.

7.4 Scalability

Intra-node. Figure 6-A reports the intra-node weak scalability of
Stream3D. We perform the test by incrementally adding GPUs to
a single node and keeping each GPU with fixed workload. It shows
that, Stream3D can sustain a throughput of 569 images/s for the
large model with four GPUs configured, while keep a parallel effi-
ciency at 85.25%. The (multi-)reduction mechanism contributes a lot
to this scalability, as shown in Figure 6-B, 50%∼80% of the redundant
communication is avoided when single (and multi-)reduction was
enabled on streaming design. Compared with the entire model con-
sumption, the result in Figure 6-B further reveals the Stream3D’s
ability of eliminating memory capacity bottleneck. Moreover, for
cases where models can be fitted in device memory, Stream3D also
improves the intra-node scalability than swap-model implementa-
tion, as shown in Figure 6-C.

Inter-node. We examine the strong scalability of Stream3D
when scaling to multi-nodes. The curves indicate that Stream3D
retains a reasonable parallel efficiency (above ∼70% for four device
configurations) when scaling up to 20 nodes (80 GPUs). It demon-
strates that Stream3D is an effective solution to handle large model
reconstruction problem.

7.5 A Real-World Case

We tested Stream3D on a real-world case for reconstructing protea-
some [4] – a highly sophisticated and important protein complex.
Results are reported in Figure 8, 9. Compared with the baseline
(of which the 3D reconstruction is CPU code, other parts are GPU-
based), Stream3D reduces the total structure determination time
from 7h 12m to 2h 32m, speeds up the reconstruction process and
the whole process by 7.58 and 2.83 times, respectively.

8 RELATEDWORK

3D Reconstruction. Due to the huge computational challenges,
3D reconstruction problem has earned much research effort, such
as the 3D image reconstruction in Computed Tomography (CT) [22,
29]. Compared with CT the stacked 3D reconstruction which is
decomposed into a series of 2D reconstructions from 1D projections
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sent relative speedup and parallel efficiency achieved on 20

GPU nodes with 80 GPUs, respectively.

with fixed orientation, direct Fourier Transform based reconstruc-
tion in cryo-EM is a true 3D reconstruction problem, which presents
tougher challenges due to the non-deterministic orientations and
huge memory requirements. Relion-2 [11] proposed two memory
access patterns to implement 3D reconstruction for its CPU code,
named Gather and Scatter. However, it is a pure complexity analysis
only takes the total number of memory access into consideration,
leaving out the discontinuity and irregularity. To mitigate the data
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Figure 8: Result of the real-world case. Proteasome Chain

K, a part of the whole structure of high resolution. A, B are

produced by the CPU baseline and Stream3D respectively.

Stream3D achieves the same resolution with baseline, com-

parison is performed in double precision. Test is conducted

on Cluster B. (Dataset: EMPIAR-10025, PDB: 6BDF)
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Figure 9: Performance results of the real-world case. The re-

construction process occupies 74.6% of baseline total time.

Stream3D reduces the reconstruction time from 5h 22m to

42m and reduces the ration to 27.9%.

race condition intrinsic in 3D reconstruction, eLife3D [35] con-
structed an interleaved scheme which made use of the linearity
nature of the coordinate transform by controlling the size of the
pixel group among different threads to reduce data dependency. Al-
though this method worked well for removing speedup hindrance
resulting from write-collision, it was not designed for multi-GPU
scaling and solving the memory capacity problem of large model.
By comparison, our design exploits the parallel opportunity at
pixel/voxel level, which is a more fine-grained parallelism than
pixel-group level design. Focusing on increasing utilization of mem-
ory bandwidth and the floating-point performance, [26] proposed
a percolation technique to optimize off-chip memory performance.
The philosophy behind the percolation idea falls in the same way
with our key-value abstraction in that both try to improve the
calculation by decoupling computation with memory operations.
However, that work is not proposed for 3D reconstruction process.

GPU Computing. Systematic strategies to the challenge of in-
sufficient GPUmemory size and irregularity in GPU computing have
been the concentrations of many researches. To eliminate the mem-
ory bottleneck, [10, 36] focus on solutions relying on hardware
extensions. Since they normally manipulate memory at page granu-
larity and take programmability as a primary goal, the performance
is less attractive for our case. Other software solutions [21, 28] lever-
age domain specific knowledge, such as deep learning (DL) filed

where the large model is also a great concern. But neural networks
in DL are layered models with static structures, which makes it
natural to partition the model into layers fitted in GPU memory.
However, finding an effective model partition method is non-trivial
in cryo-EM as we discussed in section 2.2. For irregular memory
access, [14, 30, 33, 34] made elaborate explorations on two types of
the problem, the static irregularity and the dynamic irregularity,
based on whether the access pattern can be determined at compi-
lation time or run time. Data reposition and duplication [30], as
well as thread reorganization [34] were proposed for irregularity
removal either offline or on-the-fly. However, finding the optimum
data layout in-place was proven to be NP-complete [30]. In practice,
a relaxation of the space constraint, i.e. using extra memory, is
leveraged to reduce the complexity. Unfortunately, the 3D recon-
struction problem manifests itself as a constrained problem with
extremely stringent memory budget as discussed above. Therefore,
the nondeterministic image orientations make the static methods
less attractive, while the limited memory capacity makes it can
hardly directly benefit from the dynamic whole model transforma-
tion methods either in-place (e.g. using space-filling curve [31]) or
out-of-place (e.g. through sort-padding-sharing proposed by [30]).

9 GENERALIZATION

While this work focuses on the GPU acceleration of Cryo-EM 3D re-
construction, the element-centric view and techniques proposed in
this paper are also applicable to other domains, where the problem
space exhibits extreme sparsity and nondeterminicacy. For exam-
ple, machine learning applications, such as graph embedding [20]
and word embedding [13], which exhibit sparse model update and
suffer from huge models. Our key-value streamed model partition
strategy can also benefit.

10 CONCLUSION

To enable compute-intensive high-resolution 3D cryo-EM recon-
struction to benefit from powerful GPUs, we propose Stream3D,
a novel parallel design with a key-value stream abstraction on
GPU clusters. Benefiting from this abstraction, we transform the
challenging problem into a more memory-friendly and compute-
efficient calculation, improving the performance of the reconstruc-
tion part by an average of 9.50 times and the performance of the
entire processing part by 2.83 times. Moreover, we design a hybrid
communication mechanism to enable Stream3D at a large scale,
achieving 65.32-fold speedup when using up to 80 GPUs.
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