
Patra: Parallel Tree-reweighted Message Passing

Architecture

Wenlai Zhao∗†‡, Haohuan Fu∗†‡, Guangwen Yang∗†‡ and Wayne Luk§

∗Department of Computer Science and Technology, Tsinghua University
†Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science,Tsinghua University

‡Tsinghua National Laboratory for Information Science and Technology (TNList)
§Department of Computing, Imperial College London

Email: zhaowl-11@mails.tsinghua.edu.cn, {haohuan,ygw}@tsinghua.edu.cn, w.luk@imperial.ac.uk

Abstract—Maximum a posteriori probability inference algo-
rithms for Markov Random Field are widely used in many
applications, such as computer vision and machine learning.
Sequential tree-reweighted message passing (TRW-S) is an in-
ference algorithm which shows good quality in finding optimal
solutions. However, the performance of TRW-S in software cannot
meet the requirements of many real-time applications, due to
the sequential scheme and the high memory, bandwidth and
computational costs. This paper proposes Patra, a novel parallel
tree-reweighted message passing architecture, which involves a
fully pipelined design targeting FPGA technology. We build a
hybrid CPU/FPGA system to test the performance of Patra for
stereo matching. Experimental results show that Patra provides
about 100 times faster than a software implementation of TRW-S,
and 12 times faster than a GPU-based message passing algorithm.
Compared with an existing design in four FPGAs, we can achieve
2 times speedup in a single FPGA. Moreover, Patra can work at
video rate in many cases, such as a rate of 167 frame/sec for a
standard stereo matching test case, which makes it promising for
many real-time applications.

Keywords—Markov Random Field, Maximum a posteriori prob-
ability, Parallel Tree-Reweighted Message Passing, FPGA

I. INTRODUCTION

MRF (Markov Random Field) has been a very popular
and powerful tool in computer vision. Many computer vi-
sion applications, such as stereo matching [1], photomontage
[2], and background segmentation [3], described as label
assignment problems, can be formulated in the framework of
MRF and solved using MAP (Maximum a posteriori prob-
ability) inference algorithms [4]. The MRF MAP inference
algorithms often involve a heavy computation load, making
it difficult to meet the real-time processing requirements in
many applications. Hardware-based acceleration is one of the
most practical solutions to improve the performance of the
algorithms. Moreover, as the MRF MAP inference methods
can also be used in quite a few other application domains, it is
important to design a general and highly efficient framework
for various hardware-based MRF MAP methods. This paper
introduces our starting efforts towards this goal.

Finding the optimal solution of the MRF MAP problem is
NP-hard [6]. Most related algorithms have focused on improv-
ing the performance and efficiency of the solving process, such
as graph cuts [7], belief propagation (BP) [8], and sequential
tree-reweighted message passing (TRW-S) [9]. Among these

different options, BP and TRW-S are based on the message
passing pattern and both can find an approximation to the
global optimal solution.

BP can be easily parallelized, but the accuracy and con-
vergence of BP is unguaranteed. Compared with BP, TRW-S
has better convergence properties and shows better accuracy
of the results in most cases. However, TRW-S leads to a sig-
nificantly higher cost in memory, bandwidth and computation
and the sequential message passing pattern makes it difficult
to parallelize TRW-S.

In this paper, we propose a parallel tree-reweighted mes-
sage passing architecture (Patra) based on an FPGA. Our major
contributions are as follows:

• We propose a parallel message passing pattern for
tree-reweighted message passing algorithm, which
eliminates the sequential data dependencies and can
be parallelized.

• Based on the parallelized algorithm, we propose Patra,
which is a fully pipelined design on an FPGA and
achieves significant improvements in performance.

• We build a hybrid CPU/FPGA system to test the
performance of Patra using the stereo matching ap-
plication.

The experimental results show that Patra provides about
100 times faster than a software implementation of TRW-S
[4], and 12 times faster than a GPU implementation of BP
[5]. Compared with an existing design in four FPGAs [10], we
can achieve 2 times speedup in a single FPGA on the overall
performance with less resource consumption: one-quarter of
LUTs and FFs, and three-quarters of Block RAMs. Moreover,
Patra can work at video rate in many cases, such as a rate of
167 frame/sec for a standard stereo matching test case, which
makes it promising for many real-time applications.

The organization of the paper is as follows. Section II
reviews the MRF MAP inference algorithms and existing
hardware implementations of them. Section III introduces the
parallel tree-reweighted message passing algorithm. Section
IV demonstrates our hybrid CPU/FPGA system, including
details of the fully-pipelined FPGA design. Section V presents
experimental results, and Section VI covers conclusions and
future work.



X5

X4

X1 X2

X3

y

y

yy

y

θ15

θ14

θ13

θ12

θ3

θ5

θ4

θ1 θ2

Observations

Labels

Fig. 1. Mapping a stereo matching problem to a 4-connected MRF

II. BACKGROUND AND RELATED WORK

A. Basic model

A discrete-labeling problem can be mapped to a MRF MAP
problem. Figure 1 gives an example for mapping a stereo
matching problem to a 4-connected 2D MRF. Consider an
MRF as an undirected graph G = (E, V ) with a set of nodes
V and a set of edge E. For each node s ∈ V , an observation
value ys is given, while the assignment xs is unknown. Let
X and Y represent the vector of assignments and observations
on G respectively. The MAP problem can be written as (1).

argmax
X

P (X|Y ) = argmax
X

P (Y |X)P (X) (1)

We can easily understand (1) according to the Bayes’
Rule, where P (X|Y ) is the posterior probability; P (Y |X)
is the likelihood of Y on assignment X; P (X) is the prior
probability of X .

As we can see in Figure 1, the likelihood is defined by the
local relationship (θs) between observations and assignments,
while prior probability is defined by a pairwise relationship
(θst) between assignments of neighboring nodes. Therefore,
the posterior probability can be formulated as (2).

P (X|Y ) ∝ exp(−(Σs∈V θs(xs, ys) + Σ(s,t)∈Eθst(xs, xt)))
(2)

If we take the negative log in (2) as an energy function,
the maximum a posteriori problem can be formulated as
minimizing the energy function E over X and θ (3).

E(X|θ) = θconst +Σs∈V θs(xs) + Σ(s,t)∈Eθst(xs, xt) (3)

In practice, we call the first term of the energy function
data energy and the second term smoothness energy. Data
energy is the sum of per-node data costs and smooth energy
is the sum of smoothness costs of all neighboring node pairs.
For different applications, we have different ways to define
the costs. Therefore the energy functions are application-
dependent. It has been shown in [7] that for general energy
functions, finding the globally optimal solution is NP-hard,
so many algorithms have been proposed to find approximate
solutions.

B. Relevant algorithms

Belief propagation (BP) is an efficient algorithm for energy
minimization problems and is widely used in many appli-
cations [8]. In BP, each node has a vector of belief which
indicates the costs of different label assignments to the node.
For node s and its neighbor t, belief of s is propagated to t
as messages and t will re-decide its belief according to the
messages from s and then propagates its new belief back. The
BP algorithm iteratively processes the message passing and
belief re-decision until reaching the global minimal energy.

BP is originally designed to find the exact solution for
graphical models without loops. In graphs with loops, the
message of one node can pass back to itself through the loops.
In such cases, the global energy will not converge but fall into
a loop with its value higher than the global minimum [4].

Sequential tree-reweighted message passing (TRW-S) algo-
rithm is designed for loopy graphs. The main idea of TRW-S
is to decompose the loopy graph to a set of trees. Then the
original energy function on the graph can be transformed to a
sum of energy functions on trees as (4),

E(X|θ) = ΣTωTE(XT |θT ) (4)

where θT and ωT satisfy

θ = ΣTωT θT (5)

Then we obtain relationship between the minimal energy
on the graph and the minimal energy on trees is as (6).

min
X

E(X|θ) ≥ ΣTωT min
X

E(XT |θT ) (6)

The minimal energy on trees determines the lower bound of
the global energy. TRW-S seeks for the global minimal energy
by maximizing the lower bound.

In TRW-S, messages update in a specific order called
monotonic chains. Messages are passed forward and backward
alternately by reversing the order after each iteration. It is
proved in [9] that the lower bound is guaranteed not to decrease
if the update follows the specific order.

C. Challenges for hardware designs

Because messages can be updated synchronously, BP is
easy to parallelize and well suited for hardware implemen-
tations. In [5], [11]–[13], several GPU and FPGA based BP
designs have been proposed for stereo matching application.
However, all of them has limited performance due to the high
consumption of memory and bandwidth. Moreover, accuracy
is a major issue because of BP’s disadvantage on loopy graph.

TRW-S always shows better accuracy than BP in compar-
ison experiments on CPU platforms [4] [14], but shares the
same challenges on memory and bandwidth consumption with
BP. However, there are few works on hardware acceleration
for TRW-S because of the sequential message passing pattern.
Some efforts have been made in [10]. They propose a multi-
FPGA implementation based on a diagonal ordering updating
scheme. It has achieved a respectable performance but the
sequential data dependency still exists. Consequently, it is
still not the most suitable form of algorithm for pipelined
designs, and it has a poor scalability for applications with high-
resolution.



III. ALGORITHMIC OPTIMIZATIONS

The following summarizes the shortcomings of TRW-S
presented in II:

a) Sequential message passing pattern involves data
dependency between neighbouring nodes. There-
fore, TRW-S can not be parallelized and fully
pipelined in hardware designs.

b) Reversing data after each iteration is inefficient
for memory accessing, especially for streaming
designs based on FPGAs.

c) Iterative computation causes high consumption of
bandwidth, memory and computational costs, so
that TRW-S can hardly meet the requirements of
many real-time applications.

To overcome the shortcomings, we introduce a parallel
message passing pattern for tree-reweighted algorithm. The
description of the parallel tree-reweighted message passing
algorithm is as follows:

Algorithm 1 Parallel Tree-reweighted Message Passing

1: Initialize M
(0)
us to zero;

2: for Iteration i from 1 to MAXITER do
3: for Each node s ∈ V do
4: compute and normalize the belief as

θ̂(i)s = θs +Σ(u,s)∈EM
(i−1)
us (7)

5: end for
6: for Each edge (s, t) ∈ E do
7: update and normalize the messages as

M
(i)
st;k := min

j
{(γstθ̂

(i)
s;j −M

(i−1)
ts;j ) + θst;jk} (8)

8: end for
9: Check the stop criterion

10: end for

In the algorithm, M
(i)
us represents the message vector sent

from node u to s in the ith iteration and M
(i)
us;j is the jth

element of M
(i)
us . θ̂

(i)
s is the belief vector of node s in the

ith iteration and θ̂
(i)
s:j is the jth element. θs and θst are priori

information, where θs is the data cost vector of node s and
θst;jk is the smooth cost when node s and t take the label j
and k respectively. γst is the parameter defined on trees which
is always determined by tree decomposition [9].

Based on the parallel algorithm, we propose an FPGA-
based parallel tree-reweighted message passing architecture
(Patra). The following shows the novel features of Patra and
explains how Patra overcomes the shortcomings of TRW-S:

1) In each iteration i, nodes can be updated parallelly
using messages from iteration (i−1). There is no data
dependency between neighbouring nodes. Therefore,
Patra can be fully pipelined in design.

2) No data reversing operations because of the un-
ordered updating. So memory accessing in Patra is
very efficient.

3) Forward and backward message passing can be done
in one iteration, which reduces the iteration number
by half and introduces great improvement to the
performance of Patra.

In Patra, we change the sequential update pattern. It has
been proved in [9] that unordered update will influence the
convergence of the algorithm and therefore cause a loss of
accuracy. To evaluate the accuracy, we run a set of standard
stereo matching test cases and compare the results with TRW-
S. The maximal iteration number is set to 500. We compare the
minimal energy obtained by TRW-S and Patra and find that the
loss of accuracy in Patra is less than 1%. With such numerical
difference, the disparity maps of two algorithms are almost
the same in a subjective evaluation, which will be shown in
section V-C.

Although TRW-S can converge in some cases, the number
of iterations (more than 100 in our experiment) is an unaccept-
able cost for many real-time applications. In existing TRW-S
designs, the algorithm only runs several iterations for each
frame to meet the real-time (5 iter/frame with 38 frame/sec
in [10], energy loss: 6.6%). In Patra, taking advantage of the
speed, we can do more iterations for one frame and achieve
lower energy at the same frame rate (21 iter/frame with 38
frame/sec, energy loss: 3.2%). Therefore, Patra can get a better
accuracy in real-time tasks and shows potential in dealing with
more complex applications.

IV. ARCHITECTURE DESIGN

We design a hybrid CPU/FPGA system to test Patra using
stereo matching applications. In this section, we give an
overview of the system and show the details of Patra in FPGA
design.

Read Image

DSI

Message 

Initializition

P
C

I-E

DRAM

Update 

Belief & 

Messages

Kernel

Host

Calculate Energy

Write disparity 

maps

CPU

FPGA Card

Data

Data

Control Control

Fig. 2. Overview of the hybrid CPU/FPGA system

A. Hybrid CPU/FPGA system

Stereo Matching takes two or more images as inputs and
finds the disparities for every pixel. The disparity map is
the output which contains the depth information. We use the
software provided on Middlebury website as a reference.

We decompose the stereo matching process into three parts:
input part, calculation part and refinement part. Patra is the
calculation kernel implemented on an FPGA. The input part



and refinement part run on CPUs in the host. Figure 2 gives
an overview of the hybrid system.

The host reads two input images and calculates the dispar-
ity space image (DSI) [15], which is defined as the data costs
in stereo matching [4]. Then the host initializes the messages
and transfers all the data to the DRAM on the FPGA card
via PCI-E. After that, the kernel will run for certain iterations
which is controlled by the host. Finally, the host reads new
messages from the DRAM, calculates the results and saves
the disparity maps.

Normalization

+

Calculate belief

Data cost

M
essag

es

New Messages Ebound

+

Output Buffers (Block RAMs)

Output

Smax & Sterm

Parallel Message Normalization & Truncation

Parallel Message update

Fig. 3. Architecture and dataflow of Patra

B. Design of Patra

Figure 3 shows the pipelined design of Patra and the
dataflow for message update. The operations in the algorithm
can be divided into four modules. We give a detailed analysis
for each module based on a design with 16 disparity levels
(the vector size of belief and messages is 16).

The first module is belief calculation. According to (7), we
add the data cost and four messages of one node to calculate
the new belief. So there are 4 ∗ 16 = 64 additions.

The second is belief normalization. We first find the min-
imum value in the belief vector. Then subtract the min-value
from each item in belief vector. So we need 15 comparisons
and 15 subtractions in this module.

The third module calculates the new messages. We put
four message update units in this module, working in parallel.
The update unit is designed based on (8). One difference is
that we do not have to add the smoothness cost. Instead, we
use truncation operations in the next module which can avoid
data overflow [4]. Because we decompose the graph into trees
following rows and columns, we got γst = 0.5. So that we can
use a bit shift operation to do the multiplication in (8). Thus,
to implement one message update unit, we need 16 bit-shifts,
16 subtractions and 15 comparisons.

The last module does the message normalization and
truncation. Also there are four units in this module. The

normalization unit of message is the same with the second
module. The truncation operations are based on two parameters
[4] (notated as Smax and Sterm), which are sent from
the host as a control information in Patra. The difference
between adjacent elements in messages will be truncated by
Sterm, which involves 15 subtractions for calculating the
differences, 15 comparisons and 15 subtractions for truncation.
All values in the message are truncated by Smax, which
needs 16 comparisons and 16 subtractions. Therefore, in one
normalization and truncation unit, there are 46 comparisons
and 61 subtractions.

The sum of min-values in normalization modules are stored
to DRAM for calculating Ebound. The output of the kernel
will be temporarily stored in the BRAM. The new messages
will be written back to the memory as the input data of four
neighbouring nodes for next iteration. Data of these nodes is
nonadjacent in the DRAM. So we cache the new messages
in BRAM and store data back to DRAM under a sequential
memory access pattern.

As we can see, our design is fully pipelined by the four
modules and parallel design in the last two modules can
shorten the pipeline and improve the efficiency.

C. Hardware design issues

1) Data representation: To decide the data representation
in our design, we analyze the range of values for data costs
and messages, based on three standard test cases (Tsukuba,
Venus, Teddy [4]) of stereo matching.

The data costs are usually described in two ways, abso-
lute difference and squared difference. An integer truncation
parameter (notated as Dmax) restricts the maximum of data
costs. The range of data cost is from 0 to Dmax (absolute
difference) or D2

max (squared difference). In default, Dmax

is set to the color range in the image, for example 255 in
test case Tsukuba under absolute different. However in most
cases, Dmax is set to a small number, such as 16 in Venus and
Teddy under squared difference. The max value of messages is
determined by the Smax because of the truncation operations.
Smax is usually set empirically, such as 40 in Tsukuba, 350
in Venus and 10 in Teddy. So in general, the value of data
costs and messages is nonnegative and less than 210, which
means a 10-bit unsigned integer is suffice in data costs and
messages.

However, there are some other constraints. First, the max
value of the intermediate variables is about 5 times of the
message value coming out when calculating belief. Second,
there are subtractions in message update, so unsigned data type
is not proper. Third, in our FPGA platform, data width of
input and output is prefer to be multiples of 8-bits because of
the truncation problems in data transfer. In order to make our
kernel applicable in most cases, we choose 16-bit integer in
our design, which can avoid the overflow in computation and
is suitable for the FPGA platform.

2) Bandwidth and Disparity levels: For a stereo matching
problem, the bandwidth requirement is mainly determined by
two factors, the data width and the disparity level. In test case
Tsukuba, the disparity level is 16. In each cycle, our kernel
takes 1 data cost vector and 4 message vectors as inputs while



TABLE I
RESOURCE UTILIZATION OF PATRA AND F-STRW-S [10]

Patra F-sTRW-S

Platform
MaxWorkstation Convey HC-1

1 Xilinx Virtex-6 FPGA 4 Xilinx Virtex-5 FPGAs

LUTs 73217 / 297600 (71281 / 207360)*4

FFs 110700 / 595200 (154111 / 414720)*4

BRAMs 380 / 1064 (121 / 288)*4

TABLE II
COMPARISON OF MINIMAL ENERGY OBTAINED BY PATRA AND TRW-S

Tsukuba Venus Teddy

Image Size 384 ∗ 288 434 ∗ 383 450 ∗ 375

Disparity Level 16 20 60

TRW-S 313543 3002038 1181766

Patra 313768 3007777 1193379

Relative Error 0.07% 0.19% 1.01%

4 message vectors and 1 integer for Ebound as outputs. We use
16-bits data representation, so the requirement of bandwidth
will be 290 Byte/cycle. If the kernel works at 100MHz, the
bandwidth will be 29 GByte/s.

Generally, we assume the data width is N bits, the disparity
level is Dl and the working frequency is f Hz, then the
requirement of bandwidth is (9Dl + 1) ·N · f (bit/s).

In our design, we use DRAM to store data. The bandwidth
of DRAM is 38 GByte/s. We use 16-bits integer to represent
the data. The default working frequency of our FPGA is
100MHz. According to the relationship above, the bandwidth
of DRAM can meet the requirement of kernel if the disparity
level is less than 22.5. Therefore, for test cases with disparity
levels more than 22.5 (Venus and Teddy), bandwidth becomes
the bottleneck of performance in Patra.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Platform information

We implement our design on a Maxeler FPGA platform
[16]. The MaxWorkstation has two Intel i7 quad-core CPU
and a Max3 acceleration card with a Xilinx Virtex-6 (SX475T)
FPGA. The FPGA card connects to CPU via PCI Express 2.0
x8 which has a bandwidth of 8 GB/s. There are 24GB DDR3
DRAM on the FPGA card with a maximum bandwidth of 38
GB/s. In our experiment, the FPGA is running at 100MHz.
We use Maxeler MaxCompiler development environment to
program the design and map to the FPGA.

B. Resource Utilization

Table I shows the resource utilization when mapping our
design to an FPGA card with 16-bits data costs, 16-bits
messages and 16 disparity levels. We take the FPGA-based
TRW-S implementation in [10] (F-sTRW-S) as a comparison.
F-sTRW-S uses 15-bits data costs, 24-bits messages and 16
disparity levels and is implemented on a platform with 4
Xilinx Virtex-5 (V5LX330) FPGAs. The resources in Virtex-
5 and Virtex-6, such as lookup tables(LUT), flip-flops(FF),
and block RAMs(BRAM), have same specifications, so it is a
relatively fair way to compare the amount of resources used

94%

96%

98%

100%

102%

104%

106%

108%

110%

112%

Tsukuba Venus Teddy

R
e
la

ti
ve

 
E

r
r
o
r
 
o
f 

M
in

im
a
l 

E
n

e
r
g

y

Test cases

Patra

TRW-S

BP

Graph Cut

Fig. 4. Comparison of minimal energy for different algorithms

Image
Ground 

Truth

Software 

TRW-S
Patra

Tsukuba

Venus

Teddy

Fig. 5. Disparity maps of Patra and software TRW-S

in two designs. Patra uses more Block RAMs on each FPGA
because of the optimization of output messages, which have
been discussed in section IV-B. However, in terms of total
resource utilization, Patra consumes about one-quarter of LUTs
and FFs and three-quarters of Block RAMs.

C. Accuracy

Table II shows the minimal energy obtained by the TRW-
S reference software [4] and our design in three standard test
cases: Tsukuba, Venus and Teddy. As we have discussed in
section III, the loss of accuracy for Patra is less than 0.2% in
Tsukuba and Venus, and a little higher (1.01%) in Teddy due
to its high disparity levels.

We show the comparison of Patra and TRW-S with two
other widely used algorithms, BP and Graph Cut, in Figure
4. In all cases, Patra can find a approximate solution to the
global optimum, which is nearly the same with TRW-S and
better than BP. Graph Cut is considered to be the most accurate
minimization algorithm, but it only works for a specific class
of energy functions [9]. Therefore, Patra is more competitive,
though Graph Cut shows equivalent accuracy.

The disparity maps of three stereo matching test cases
obtained by Patra and TRW-S are shown in Figure 5. As we
can see, the results of Patra are almost the same with TRW-S
and intuitively acceptable for stereo matching application.

D. Speed

Patra achieves great improvement in speed than TRW-S.
In table III, we show the execution time of one iteration and



TABLE III
COMPARISON OF EXECUTION TIME FOR ONE ITERATION (N/A: NO RELATED RESULT IN [5])

Software Impl. [4] Tile-based BP [5] F-sTRW-S [10] Patra

Platform Intel Core i5 @2.3GHz NV GeForce 8800GTS Convey HC-1 4 FPGAs MaxWorkstation 1 FPGA

Tsukuba Time(msec) 261.5 19.5 3.2 1.2

384*288*16L Speedup 1× 13.4× 81.7× 217.9×

Venus Time(msec) 447.1 N/A 9.6 4.8

434*383*20L Speedup 1× N/A 46.6× 93.1×

Teddy Time(msec) 1371.2 112.9 19.4 9.4

450*375*60L Speedup 1× 12.1× 70.7× 145.9×

compare it with the reference software and the F-sTRW-S in
[10]. We run the benchmark provided by [4], which includes
Tsukuba (384*288*16L), Venus (434*383*20L) and Teddy
(450*375*60L). To show the best performance of our design,
we configure the kernel with different specifications so that we
can run the test cases with different disparity levels. As we
have mentioned in section II-C, GPUs have also been widely
used for accelerating message passing algorithms but there are
few work on accelerating TRW-S with GPUs, so we compare
our design with a GPU-based BP (Tile-based BP [5]) to make
our results more complete.

The results show that, our design is at least 93 times
faster than the software implementation of TRW-S, 12 times
faster than the BP implementation on GPUs and about 2 times
faster on the overall performance than F-sTRW-S. With the
outstanding performance showed in one iteration, Patra can
meet the requirements of many real-time applications. For
Tsukuba, if we do 5 iterations for each frame, we can run
at 167 frame/sec. Even for more difficult cases like Teddy,
our design can also runs near video-rate (21 frame/sec for 5
iter/frame).

VI. CONCLUSIONS

This paper presents a novel parallel tree-reweighted mes-
sage passing architecture (Patra), which adopts a fully-
pipelined design targeting FPGA technology. We build a
hybrid CPU/FPGA system to evaluate the performance of
Patra for applications in stereo matching. With the proposed
optimizations on both algorithm and hardware design, our
architecture achieves about 100 times speedup over a software
implementation of TRW-S. Compared with an existing design
of TRW-S in four FPGAs, we achieve 2 times speedup in a
single FPGA while consuming much less resources. Moreover,
our design can work at video-rate in many cases, which makes
it promising for many real-time applications. Current and
future work includes extending Patra to cover designs with
multiple FPGAs, and to support automated implementations
targeting a variety of applications.

ACKNOWLEDGEMENT

This work was supported in part by National Natural
Science Foundation of China (Grant No. 61303003,41374113),
by National High-tech R&D (863) Program of China (Grant
No. 2013AA01A208), by UK EPSRC, by the European Union
Seventh Framework Programme (Grant No. 257906, 287804
and 318521), by the HiPEAC NoE, Maxeler University Pro-
gram, and Altera.

REFERENCES

[1] Y. Boykov, O. Veksler, and R. Zabih, “Markov Random Fields with
Efficient Approximations”, Proc. IEEE CS Conf. Computer Vision and

Pattern Recognition, pp. 648-655, 1998.

[2] A. Agarwala, et al. “Interactive Digital Photomontage”, ACM Trans.

Graphics, vol. 23, no. 3, pp. 294-302, 2004.

[3] Y. Zhou, et al. “Background segmentation using spatial-temporal multi-
resolution MRF”, Application of Computer Vision, 2005 Seventh IEEE

Workshops on. pp. 8-13, 2005.

[4] R. Szeliski, O. Veksler and M. Tappen, “A Comparative Study of Energy
Minimization Methods for Markov Random Fields with Smoothness
Based Priors”, IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 30, no. 6, pp. 1068-1080, Jun. 2008.

[5] C. Liang, C. Cheng and Y. Lai, “Hardware-Efficient Belief Propagation”,
IEEE Trans. Circuits and Systems for Video Technology, vol. 21, no. 5,
pp. 525-537, May 2011.

[6] P. Dagum, M. Luby, “Approximating probabilistic inference in Bayesian
belief networks is NP-hard”, Artificial intelligence, vol. 60, no. 1, pp.
141-153, Mar. 1993.

[7] Y. Boykov, O. Veksler and R. Zabih, “Fast Approximate Energy Mini-
mization Via Graph Cuts”, IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 23, no. 11, pp. 1222-1239, Nov. 2001.

[8] J. Sun, H. Shun and N. Zheng, “Stereo Matching Using Belief Propaga-
tion”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25,
no. 7, pp. 787-800, Jul. 2003.

[9] V. Kolmogorov, “Convergent Tree-Reweighted Message Passing for
Energy Minimization”, IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 28, no. 10, pp. 1568-1583 Oct. 2006.

[10] J. Choi and R. Rutenbar, “Hardware Implementation of MRF MAP
Inference on an FPGA Platform”, Field Programmable Logic and Ap-

plications (FPL), 2012 22nd International Conference on., pp. 209-216,
2012.

[11] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister, “High-quality real-
time stereo using adaptive cost aggregation and dynamic programming”,
in Proc. IEEE 3D Data Processing, Visualization, and Transmission

(3DPVT), pp. 798-805, 2006.

[12] J. Park, el al., “A 30fps Stereo Matching Processor Based on Belief
Propagation with Disparity -Parallel PE Array Architecture”, in Proc.

IEEE Int. Symp. Circuits and Systems, pp. 453-456, 2010.

[13] J. Prez, P. Sanchez and M. Martinez, “High memory throughput
FPGA architecture for high-definition Belief-Propagation stereo match-
ing”, IEEE Signals, Circuits and Systems (SCS), 2009 3rd International

Conference on. , pp. 1-6, 2009.

[14] J. Kappes, et al. , “A Comparative Study of Modern Inference Tech-
niques for Discrete Energy Minimization Problems”, Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2013.

[15] A. Bobik and S. Intille., “Large occlusion stereo”, Intern. Journal on

computer vision 33, pp.181-200, 1999.

[16] O. Pell and V. Averbukh, “Maximum Performance Computing with
Dataflow Engines”, Computing in Science & Engineering, pp. 98C103,
2012.


